Abstract

We report an InGaP/AlInGaP/GaAs microchip vertical-external-cavity surface emitting laser operating directly at red wavelengths and demonstrate its potential for array-format operation. Optical pumping with up to 3.3W at 532nm produced a maximum output power of 330mW at 675nm, in a single circularly-symmetric beam with M2<2. Simultaneous pumping with three separate input beams, generated using a diffractive optical element, achieved lasing from three discrete areas of the same chip. Output power of ~95mW per beam was obtained from this 3�?1 array, each beam having a Gaussian intensity profile with M2<1.2. In a further development, a spatial light modulator allowed computer control over the orientation and separation of the pump beams, and hence dynamic control over the configuration of the VECSEL array.

© 2005 Optical Society of America

PDF Article

References

  • View by:
  • |

  1. J. E. Hastie, S. Calvez, M. D. Dawson, T. Leinonen, A. Laakso, J. Lyytikäinen, and M. Pessa, "High power CW red VECSEL with linearly polarized TEM00 output beam," Opt. Express 13, 77-81 (2005), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-1-77.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-1-77.</a>
    [CrossRef]
  2. J. E. Hastie, J. M. Hopkins, C. W. Jeon, S. Calvez, D. Burns, M. D. Dawson, R. Abram, E. Riis, A. I. Ferguson, W. J. Alford, T. D. Raymond, and A. A. Allerman, "Microchip vertical external cavity surface emitting lasers," Electron. Lett. 39, 1324-1326 (2003).
    [CrossRef]
  3. S. A. Smith, J. M. Hopkins, J. E. Hastie, D. Burns, S. Calvez, M. D. Dawson, T. Jouhti, J. Kontinnen, and M. Pessa, "Diamond-microchip GaInNAs vertical external-cavity surface-emitting laser operating CW at 1315nm," Electron. Lett. 40, 935-937 (2004).
    [CrossRef]
  4. R. Dumke, M. Volk, T. Müther, F. B. J. Buchkremer, G. Birkl, and W. Ertmer, "Micro-optical realization of arrays of selectively addressable dipole traps: a scalable configuration for quantum computation with atomic qubits," Phys. Rev. Lett. 89, 097903 (2002).
    [CrossRef]
  5. A. L. Birkbeck, R. A. Flynn, M. Ozkan, D. Song, M. Gross, and S. C. Esener, "VCSEL arrays as micromanipulators in chip-based biosystems," Biomedical Microdevices 5, 47-54 (2003).
    [CrossRef]
  6. A. T. O'Neill and M. J. Padgett, "Axial and lateral trapping efficiency of Laguerre-Gaussian modes in inverted optical tweezers," Opt. Commun. 193, 45-50 (2001).
    [CrossRef]
  7. J. E. Hastie, J. M. Hopkins, S. Calvez, C. W. Jeon, D. Burns, R. Abram, E. Riis, A. I. Ferguson, and M. D. Dawson, "0.5-W single transverse-mode operation of an 850-nm diode-pumped surface-emitting semiconductor laser," IEEE Photonics Technol. Lett. 15, 894-896 (2003).
    [CrossRef]
  8. S. D. McDougall, O. P. Kowalski, C. J. Hamilton, F. Camacho, B. C. Qiu, M. L. Ke, R. M. De La Rue, A. C. Bryce, and J. H. Marsh, �??Monolithic integration via a universal damage enhanced quantum-well intermixing technique,�?? IEEE J. Sel. Top. Quantum Electron. 4, 636-646 (1998).
  9. G. Sinclair, P. Jordan, J. Courtial, M. J. Padgett, J. Cooper, and Z. J. Laczik, �??Assembly of 3-dimensional structures using programmable holographic optical tweezers,�?? Opt. Express 12, 5475-5480 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-22-5475.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-22-5475.</a>
    [CrossRef]

Biomedical Microdevices (1)

A. L. Birkbeck, R. A. Flynn, M. Ozkan, D. Song, M. Gross, and S. C. Esener, "VCSEL arrays as micromanipulators in chip-based biosystems," Biomedical Microdevices 5, 47-54 (2003).
[CrossRef]

Electron. Lett. (2)

J. E. Hastie, J. M. Hopkins, C. W. Jeon, S. Calvez, D. Burns, M. D. Dawson, R. Abram, E. Riis, A. I. Ferguson, W. J. Alford, T. D. Raymond, and A. A. Allerman, "Microchip vertical external cavity surface emitting lasers," Electron. Lett. 39, 1324-1326 (2003).
[CrossRef]

S. A. Smith, J. M. Hopkins, J. E. Hastie, D. Burns, S. Calvez, M. D. Dawson, T. Jouhti, J. Kontinnen, and M. Pessa, "Diamond-microchip GaInNAs vertical external-cavity surface-emitting laser operating CW at 1315nm," Electron. Lett. 40, 935-937 (2004).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

S. D. McDougall, O. P. Kowalski, C. J. Hamilton, F. Camacho, B. C. Qiu, M. L. Ke, R. M. De La Rue, A. C. Bryce, and J. H. Marsh, �??Monolithic integration via a universal damage enhanced quantum-well intermixing technique,�?? IEEE J. Sel. Top. Quantum Electron. 4, 636-646 (1998).

IEEE Photonics Technol. Lett. (1)

J. E. Hastie, J. M. Hopkins, S. Calvez, C. W. Jeon, D. Burns, R. Abram, E. Riis, A. I. Ferguson, and M. D. Dawson, "0.5-W single transverse-mode operation of an 850-nm diode-pumped surface-emitting semiconductor laser," IEEE Photonics Technol. Lett. 15, 894-896 (2003).
[CrossRef]

Opt. Commun. (1)

A. T. O'Neill and M. J. Padgett, "Axial and lateral trapping efficiency of Laguerre-Gaussian modes in inverted optical tweezers," Opt. Commun. 193, 45-50 (2001).
[CrossRef]

Opt. Express (2)

Phys. Rev. Lett. (1)

R. Dumke, M. Volk, T. Müther, F. B. J. Buchkremer, G. Birkl, and W. Ertmer, "Micro-optical realization of arrays of selectively addressable dipole traps: a scalable configuration for quantum computation with atomic qubits," Phys. Rev. Lett. 89, 097903 (2002).
[CrossRef]

Supplementary Material (1)

» Media 1: MOV (1605 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics