Abstract

We describe a microoptical planar waveguide solid immersion mirror with high optical throughput, and show that it can focus light to spot sizes of ~90 nm at a wavelength of 413 nm. Scanning near field optical microscope images of the light within the device are in good agreement with a simple theoretical model. This device is accurately mass-produced with lithographic and thin film deposition techniques known from modern integrated circuit processing.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the Diffraction Barrier: Optical Microscopy on a Nanometric Scale,” Science 251, 1468–1470 (1991).
    [CrossRef] [PubMed]
  2. C. Mihalcea, A. Vollkopf, and E. Oesterschulze, “Reproducible Large-Area Microfabrication of Sub-100 nm Apertures on Hollow Tips,” J. Electrochem. Soc. 147, (5) 1970–1972 (2000).
    [CrossRef]
  3. H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66, 163–182 (1944).
    [CrossRef]
  4. M. Ohtsu, M., and H. Hori, Near-field Nano-optics (Kluwer Academic, New York, 1999) 129.
    [CrossRef]
  5. S. M. Mansfield and G. S. Kino, “Solid Immersion Microscope,” Appl. Phys. Lett. 57, 2615–2616 (1990).
    [CrossRef]
  6. Q. Wu, G. D. Feke, R. D. Grober, and L. P. Ghislain, “Realization of numerical aperture 2.0 using a gallium phosphide solid immersion lens,” Appl. Phys. Lett. 75, 4064–4066 (1999).
    [CrossRef]
  7. M. Shinoda, K. Saito, T. Ishimoto, T. Kondo, A. Nakaoki, M. Furuki, M. Takeda, and M. Yamamoto, “High-density near-field readout over 100-GB capacity using a solid immersion lens with NA of 2.05,” Proc. SPIE 5069, 306–311 (2003).
    [CrossRef]
  8. L. P. Ghislain and V. B. Elings, “Near-field scanning solid immersion microscope,” Appl. Phys. Lett. 72, 2779–2781 (1998).
    [CrossRef]
  9. B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, and G. S. Kino, “Near-field optical data storage using a solid immersion lens,” Appl. Phys. Lett. 65, 388–390 (1994).
    [CrossRef]
  10. L. P. Ghislain, V. B. Elings, K. B. Crozier, S. R. Manalis, S. C. Minne, K. Wilder, G. S. Kino, and C. F. Quate, “Near-field photolithography with a solid immersion lens,” Appl. Phys. Lett. 74, 501–503 (1999).
    [CrossRef]
  11. F. Zijp, M. B. van der Mark, J. I. Lee, C. A. Verschuren, B. H. W. Hendriks, M. L. M. Balistreri, H. P. Urbach, M. A. H. van der Aa, and A. V. Padiy, “Near field read-out of a 50 GB first-surface disk with NA=1.9 and a proposal for a cover-layer incident, dual-layer near field system,” Proc. SPIE 5380, 209–223 (2004).
    [CrossRef]
  12. T. Song, H. Kwon, Y. Yoon, K. Jung, N. Park, and Y. Park, “Aspherical solid immersion lens of integrated optical head for near-field recording,” Jpn. J. Appl. Phys. 42, 1082–1089 (2003).
    [CrossRef]
  13. K. Ueyanagi, Y. Uehara, Y. Adachi, T. Suzuki, S. Moriyasu, T. Suzuki, K. Wakabayashi, Y. Yamagata, and H. Ohmori, “Fabrication of a hemi-paraboloidal solid immersion mirror and designing of an optical head with the mirror,” Jpn. J. Appl. Phys. 42, 898–903 (2003).
    [CrossRef]
  14. H. Nishihara, M. Haruna, and T. Suhara, Optical Integrated Circuits (McGraw-Hill, New York, 1989) Sect. 2.2.4.
  15. E. Wolf, “Electromagnetic diffraction in optical systems I. An integral representation of the image field,” Proc. Roy. Soc. Ser. A 253, 349–357 (1959).
    [CrossRef]
  16. B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system,” Proc. Roy. Soc. Ser. A 253, 358–379 (1959).
    [CrossRef]
  17. A. V. Itagi, T. E. Schlesinger, and D. D. Stancil, “Refraction theory for planar waveguides: Modeling of a mode index integrated solid immersion lens,” Jpn. J. Appl. Phys. 42, 740–749 (2003).
    [CrossRef]

2004 (1)

F. Zijp, M. B. van der Mark, J. I. Lee, C. A. Verschuren, B. H. W. Hendriks, M. L. M. Balistreri, H. P. Urbach, M. A. H. van der Aa, and A. V. Padiy, “Near field read-out of a 50 GB first-surface disk with NA=1.9 and a proposal for a cover-layer incident, dual-layer near field system,” Proc. SPIE 5380, 209–223 (2004).
[CrossRef]

2003 (4)

T. Song, H. Kwon, Y. Yoon, K. Jung, N. Park, and Y. Park, “Aspherical solid immersion lens of integrated optical head for near-field recording,” Jpn. J. Appl. Phys. 42, 1082–1089 (2003).
[CrossRef]

K. Ueyanagi, Y. Uehara, Y. Adachi, T. Suzuki, S. Moriyasu, T. Suzuki, K. Wakabayashi, Y. Yamagata, and H. Ohmori, “Fabrication of a hemi-paraboloidal solid immersion mirror and designing of an optical head with the mirror,” Jpn. J. Appl. Phys. 42, 898–903 (2003).
[CrossRef]

A. V. Itagi, T. E. Schlesinger, and D. D. Stancil, “Refraction theory for planar waveguides: Modeling of a mode index integrated solid immersion lens,” Jpn. J. Appl. Phys. 42, 740–749 (2003).
[CrossRef]

M. Shinoda, K. Saito, T. Ishimoto, T. Kondo, A. Nakaoki, M. Furuki, M. Takeda, and M. Yamamoto, “High-density near-field readout over 100-GB capacity using a solid immersion lens with NA of 2.05,” Proc. SPIE 5069, 306–311 (2003).
[CrossRef]

2000 (1)

C. Mihalcea, A. Vollkopf, and E. Oesterschulze, “Reproducible Large-Area Microfabrication of Sub-100 nm Apertures on Hollow Tips,” J. Electrochem. Soc. 147, (5) 1970–1972 (2000).
[CrossRef]

1999 (2)

Q. Wu, G. D. Feke, R. D. Grober, and L. P. Ghislain, “Realization of numerical aperture 2.0 using a gallium phosphide solid immersion lens,” Appl. Phys. Lett. 75, 4064–4066 (1999).
[CrossRef]

L. P. Ghislain, V. B. Elings, K. B. Crozier, S. R. Manalis, S. C. Minne, K. Wilder, G. S. Kino, and C. F. Quate, “Near-field photolithography with a solid immersion lens,” Appl. Phys. Lett. 74, 501–503 (1999).
[CrossRef]

1998 (1)

L. P. Ghislain and V. B. Elings, “Near-field scanning solid immersion microscope,” Appl. Phys. Lett. 72, 2779–2781 (1998).
[CrossRef]

1994 (1)

B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, and G. S. Kino, “Near-field optical data storage using a solid immersion lens,” Appl. Phys. Lett. 65, 388–390 (1994).
[CrossRef]

1991 (1)

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the Diffraction Barrier: Optical Microscopy on a Nanometric Scale,” Science 251, 1468–1470 (1991).
[CrossRef] [PubMed]

1990 (1)

S. M. Mansfield and G. S. Kino, “Solid Immersion Microscope,” Appl. Phys. Lett. 57, 2615–2616 (1990).
[CrossRef]

1959 (2)

E. Wolf, “Electromagnetic diffraction in optical systems I. An integral representation of the image field,” Proc. Roy. Soc. Ser. A 253, 349–357 (1959).
[CrossRef]

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system,” Proc. Roy. Soc. Ser. A 253, 358–379 (1959).
[CrossRef]

1944 (1)

H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66, 163–182 (1944).
[CrossRef]

Aa, M. A. H. van der

F. Zijp, M. B. van der Mark, J. I. Lee, C. A. Verschuren, B. H. W. Hendriks, M. L. M. Balistreri, H. P. Urbach, M. A. H. van der Aa, and A. V. Padiy, “Near field read-out of a 50 GB first-surface disk with NA=1.9 and a proposal for a cover-layer incident, dual-layer near field system,” Proc. SPIE 5380, 209–223 (2004).
[CrossRef]

Adachi, Y.

K. Ueyanagi, Y. Uehara, Y. Adachi, T. Suzuki, S. Moriyasu, T. Suzuki, K. Wakabayashi, Y. Yamagata, and H. Ohmori, “Fabrication of a hemi-paraboloidal solid immersion mirror and designing of an optical head with the mirror,” Jpn. J. Appl. Phys. 42, 898–903 (2003).
[CrossRef]

Balistreri, M. L. M.

F. Zijp, M. B. van der Mark, J. I. Lee, C. A. Verschuren, B. H. W. Hendriks, M. L. M. Balistreri, H. P. Urbach, M. A. H. van der Aa, and A. V. Padiy, “Near field read-out of a 50 GB first-surface disk with NA=1.9 and a proposal for a cover-layer incident, dual-layer near field system,” Proc. SPIE 5380, 209–223 (2004).
[CrossRef]

Bethe, H. A.

H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66, 163–182 (1944).
[CrossRef]

Betzig, E.

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the Diffraction Barrier: Optical Microscopy on a Nanometric Scale,” Science 251, 1468–1470 (1991).
[CrossRef] [PubMed]

Crozier, K. B.

L. P. Ghislain, V. B. Elings, K. B. Crozier, S. R. Manalis, S. C. Minne, K. Wilder, G. S. Kino, and C. F. Quate, “Near-field photolithography with a solid immersion lens,” Appl. Phys. Lett. 74, 501–503 (1999).
[CrossRef]

Elings, V. B.

L. P. Ghislain, V. B. Elings, K. B. Crozier, S. R. Manalis, S. C. Minne, K. Wilder, G. S. Kino, and C. F. Quate, “Near-field photolithography with a solid immersion lens,” Appl. Phys. Lett. 74, 501–503 (1999).
[CrossRef]

L. P. Ghislain and V. B. Elings, “Near-field scanning solid immersion microscope,” Appl. Phys. Lett. 72, 2779–2781 (1998).
[CrossRef]

Feke, G. D.

Q. Wu, G. D. Feke, R. D. Grober, and L. P. Ghislain, “Realization of numerical aperture 2.0 using a gallium phosphide solid immersion lens,” Appl. Phys. Lett. 75, 4064–4066 (1999).
[CrossRef]

Furuki, M.

M. Shinoda, K. Saito, T. Ishimoto, T. Kondo, A. Nakaoki, M. Furuki, M. Takeda, and M. Yamamoto, “High-density near-field readout over 100-GB capacity using a solid immersion lens with NA of 2.05,” Proc. SPIE 5069, 306–311 (2003).
[CrossRef]

Ghislain, L. P.

Q. Wu, G. D. Feke, R. D. Grober, and L. P. Ghislain, “Realization of numerical aperture 2.0 using a gallium phosphide solid immersion lens,” Appl. Phys. Lett. 75, 4064–4066 (1999).
[CrossRef]

L. P. Ghislain, V. B. Elings, K. B. Crozier, S. R. Manalis, S. C. Minne, K. Wilder, G. S. Kino, and C. F. Quate, “Near-field photolithography with a solid immersion lens,” Appl. Phys. Lett. 74, 501–503 (1999).
[CrossRef]

L. P. Ghislain and V. B. Elings, “Near-field scanning solid immersion microscope,” Appl. Phys. Lett. 72, 2779–2781 (1998).
[CrossRef]

Grober, R. D.

Q. Wu, G. D. Feke, R. D. Grober, and L. P. Ghislain, “Realization of numerical aperture 2.0 using a gallium phosphide solid immersion lens,” Appl. Phys. Lett. 75, 4064–4066 (1999).
[CrossRef]

Harris, T. D.

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the Diffraction Barrier: Optical Microscopy on a Nanometric Scale,” Science 251, 1468–1470 (1991).
[CrossRef] [PubMed]

Haruna, M.

H. Nishihara, M. Haruna, and T. Suhara, Optical Integrated Circuits (McGraw-Hill, New York, 1989) Sect. 2.2.4.

Hendriks, B. H. W.

F. Zijp, M. B. van der Mark, J. I. Lee, C. A. Verschuren, B. H. W. Hendriks, M. L. M. Balistreri, H. P. Urbach, M. A. H. van der Aa, and A. V. Padiy, “Near field read-out of a 50 GB first-surface disk with NA=1.9 and a proposal for a cover-layer incident, dual-layer near field system,” Proc. SPIE 5380, 209–223 (2004).
[CrossRef]

Hori, H.

M. Ohtsu, M., and H. Hori, Near-field Nano-optics (Kluwer Academic, New York, 1999) 129.
[CrossRef]

Ishimoto, T.

M. Shinoda, K. Saito, T. Ishimoto, T. Kondo, A. Nakaoki, M. Furuki, M. Takeda, and M. Yamamoto, “High-density near-field readout over 100-GB capacity using a solid immersion lens with NA of 2.05,” Proc. SPIE 5069, 306–311 (2003).
[CrossRef]

Itagi, A. V.

A. V. Itagi, T. E. Schlesinger, and D. D. Stancil, “Refraction theory for planar waveguides: Modeling of a mode index integrated solid immersion lens,” Jpn. J. Appl. Phys. 42, 740–749 (2003).
[CrossRef]

Jung, K.

T. Song, H. Kwon, Y. Yoon, K. Jung, N. Park, and Y. Park, “Aspherical solid immersion lens of integrated optical head for near-field recording,” Jpn. J. Appl. Phys. 42, 1082–1089 (2003).
[CrossRef]

Kino, G. S.

L. P. Ghislain, V. B. Elings, K. B. Crozier, S. R. Manalis, S. C. Minne, K. Wilder, G. S. Kino, and C. F. Quate, “Near-field photolithography with a solid immersion lens,” Appl. Phys. Lett. 74, 501–503 (1999).
[CrossRef]

B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, and G. S. Kino, “Near-field optical data storage using a solid immersion lens,” Appl. Phys. Lett. 65, 388–390 (1994).
[CrossRef]

S. M. Mansfield and G. S. Kino, “Solid Immersion Microscope,” Appl. Phys. Lett. 57, 2615–2616 (1990).
[CrossRef]

Kondo, T.

M. Shinoda, K. Saito, T. Ishimoto, T. Kondo, A. Nakaoki, M. Furuki, M. Takeda, and M. Yamamoto, “High-density near-field readout over 100-GB capacity using a solid immersion lens with NA of 2.05,” Proc. SPIE 5069, 306–311 (2003).
[CrossRef]

Kostelak, R. L.

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the Diffraction Barrier: Optical Microscopy on a Nanometric Scale,” Science 251, 1468–1470 (1991).
[CrossRef] [PubMed]

Kwon, H.

T. Song, H. Kwon, Y. Yoon, K. Jung, N. Park, and Y. Park, “Aspherical solid immersion lens of integrated optical head for near-field recording,” Jpn. J. Appl. Phys. 42, 1082–1089 (2003).
[CrossRef]

Lee, J. I.

F. Zijp, M. B. van der Mark, J. I. Lee, C. A. Verschuren, B. H. W. Hendriks, M. L. M. Balistreri, H. P. Urbach, M. A. H. van der Aa, and A. V. Padiy, “Near field read-out of a 50 GB first-surface disk with NA=1.9 and a proposal for a cover-layer incident, dual-layer near field system,” Proc. SPIE 5380, 209–223 (2004).
[CrossRef]

M.,

M. Ohtsu, M., and H. Hori, Near-field Nano-optics (Kluwer Academic, New York, 1999) 129.
[CrossRef]

Mamin, H. J.

B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, and G. S. Kino, “Near-field optical data storage using a solid immersion lens,” Appl. Phys. Lett. 65, 388–390 (1994).
[CrossRef]

Manalis, S. R.

L. P. Ghislain, V. B. Elings, K. B. Crozier, S. R. Manalis, S. C. Minne, K. Wilder, G. S. Kino, and C. F. Quate, “Near-field photolithography with a solid immersion lens,” Appl. Phys. Lett. 74, 501–503 (1999).
[CrossRef]

Mansfield, S. M.

S. M. Mansfield and G. S. Kino, “Solid Immersion Microscope,” Appl. Phys. Lett. 57, 2615–2616 (1990).
[CrossRef]

Mark, M. B. van der

F. Zijp, M. B. van der Mark, J. I. Lee, C. A. Verschuren, B. H. W. Hendriks, M. L. M. Balistreri, H. P. Urbach, M. A. H. van der Aa, and A. V. Padiy, “Near field read-out of a 50 GB first-surface disk with NA=1.9 and a proposal for a cover-layer incident, dual-layer near field system,” Proc. SPIE 5380, 209–223 (2004).
[CrossRef]

Mihalcea, C.

C. Mihalcea, A. Vollkopf, and E. Oesterschulze, “Reproducible Large-Area Microfabrication of Sub-100 nm Apertures on Hollow Tips,” J. Electrochem. Soc. 147, (5) 1970–1972 (2000).
[CrossRef]

Minne, S. C.

L. P. Ghislain, V. B. Elings, K. B. Crozier, S. R. Manalis, S. C. Minne, K. Wilder, G. S. Kino, and C. F. Quate, “Near-field photolithography with a solid immersion lens,” Appl. Phys. Lett. 74, 501–503 (1999).
[CrossRef]

Moriyasu, S.

K. Ueyanagi, Y. Uehara, Y. Adachi, T. Suzuki, S. Moriyasu, T. Suzuki, K. Wakabayashi, Y. Yamagata, and H. Ohmori, “Fabrication of a hemi-paraboloidal solid immersion mirror and designing of an optical head with the mirror,” Jpn. J. Appl. Phys. 42, 898–903 (2003).
[CrossRef]

Nakaoki, A.

M. Shinoda, K. Saito, T. Ishimoto, T. Kondo, A. Nakaoki, M. Furuki, M. Takeda, and M. Yamamoto, “High-density near-field readout over 100-GB capacity using a solid immersion lens with NA of 2.05,” Proc. SPIE 5069, 306–311 (2003).
[CrossRef]

Nishihara, H.

H. Nishihara, M. Haruna, and T. Suhara, Optical Integrated Circuits (McGraw-Hill, New York, 1989) Sect. 2.2.4.

Oesterschulze, E.

C. Mihalcea, A. Vollkopf, and E. Oesterschulze, “Reproducible Large-Area Microfabrication of Sub-100 nm Apertures on Hollow Tips,” J. Electrochem. Soc. 147, (5) 1970–1972 (2000).
[CrossRef]

Ohmori, H.

K. Ueyanagi, Y. Uehara, Y. Adachi, T. Suzuki, S. Moriyasu, T. Suzuki, K. Wakabayashi, Y. Yamagata, and H. Ohmori, “Fabrication of a hemi-paraboloidal solid immersion mirror and designing of an optical head with the mirror,” Jpn. J. Appl. Phys. 42, 898–903 (2003).
[CrossRef]

Ohtsu, M.

M. Ohtsu, M., and H. Hori, Near-field Nano-optics (Kluwer Academic, New York, 1999) 129.
[CrossRef]

Padiy, A. V.

F. Zijp, M. B. van der Mark, J. I. Lee, C. A. Verschuren, B. H. W. Hendriks, M. L. M. Balistreri, H. P. Urbach, M. A. H. van der Aa, and A. V. Padiy, “Near field read-out of a 50 GB first-surface disk with NA=1.9 and a proposal for a cover-layer incident, dual-layer near field system,” Proc. SPIE 5380, 209–223 (2004).
[CrossRef]

Park, N.

T. Song, H. Kwon, Y. Yoon, K. Jung, N. Park, and Y. Park, “Aspherical solid immersion lens of integrated optical head for near-field recording,” Jpn. J. Appl. Phys. 42, 1082–1089 (2003).
[CrossRef]

Park, Y.

T. Song, H. Kwon, Y. Yoon, K. Jung, N. Park, and Y. Park, “Aspherical solid immersion lens of integrated optical head for near-field recording,” Jpn. J. Appl. Phys. 42, 1082–1089 (2003).
[CrossRef]

Quate, C. F.

L. P. Ghislain, V. B. Elings, K. B. Crozier, S. R. Manalis, S. C. Minne, K. Wilder, G. S. Kino, and C. F. Quate, “Near-field photolithography with a solid immersion lens,” Appl. Phys. Lett. 74, 501–503 (1999).
[CrossRef]

Richards, B.

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system,” Proc. Roy. Soc. Ser. A 253, 358–379 (1959).
[CrossRef]

Rugar, D.

B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, and G. S. Kino, “Near-field optical data storage using a solid immersion lens,” Appl. Phys. Lett. 65, 388–390 (1994).
[CrossRef]

Saito, K.

M. Shinoda, K. Saito, T. Ishimoto, T. Kondo, A. Nakaoki, M. Furuki, M. Takeda, and M. Yamamoto, “High-density near-field readout over 100-GB capacity using a solid immersion lens with NA of 2.05,” Proc. SPIE 5069, 306–311 (2003).
[CrossRef]

Schlesinger, T. E.

A. V. Itagi, T. E. Schlesinger, and D. D. Stancil, “Refraction theory for planar waveguides: Modeling of a mode index integrated solid immersion lens,” Jpn. J. Appl. Phys. 42, 740–749 (2003).
[CrossRef]

Shinoda, M.

M. Shinoda, K. Saito, T. Ishimoto, T. Kondo, A. Nakaoki, M. Furuki, M. Takeda, and M. Yamamoto, “High-density near-field readout over 100-GB capacity using a solid immersion lens with NA of 2.05,” Proc. SPIE 5069, 306–311 (2003).
[CrossRef]

Song, T.

T. Song, H. Kwon, Y. Yoon, K. Jung, N. Park, and Y. Park, “Aspherical solid immersion lens of integrated optical head for near-field recording,” Jpn. J. Appl. Phys. 42, 1082–1089 (2003).
[CrossRef]

Stancil, D. D.

A. V. Itagi, T. E. Schlesinger, and D. D. Stancil, “Refraction theory for planar waveguides: Modeling of a mode index integrated solid immersion lens,” Jpn. J. Appl. Phys. 42, 740–749 (2003).
[CrossRef]

Studenmund, W. R.

B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, and G. S. Kino, “Near-field optical data storage using a solid immersion lens,” Appl. Phys. Lett. 65, 388–390 (1994).
[CrossRef]

Suhara, T.

H. Nishihara, M. Haruna, and T. Suhara, Optical Integrated Circuits (McGraw-Hill, New York, 1989) Sect. 2.2.4.

Suzuki, T.

K. Ueyanagi, Y. Uehara, Y. Adachi, T. Suzuki, S. Moriyasu, T. Suzuki, K. Wakabayashi, Y. Yamagata, and H. Ohmori, “Fabrication of a hemi-paraboloidal solid immersion mirror and designing of an optical head with the mirror,” Jpn. J. Appl. Phys. 42, 898–903 (2003).
[CrossRef]

K. Ueyanagi, Y. Uehara, Y. Adachi, T. Suzuki, S. Moriyasu, T. Suzuki, K. Wakabayashi, Y. Yamagata, and H. Ohmori, “Fabrication of a hemi-paraboloidal solid immersion mirror and designing of an optical head with the mirror,” Jpn. J. Appl. Phys. 42, 898–903 (2003).
[CrossRef]

Takeda, M.

M. Shinoda, K. Saito, T. Ishimoto, T. Kondo, A. Nakaoki, M. Furuki, M. Takeda, and M. Yamamoto, “High-density near-field readout over 100-GB capacity using a solid immersion lens with NA of 2.05,” Proc. SPIE 5069, 306–311 (2003).
[CrossRef]

Terris, B. D.

B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, and G. S. Kino, “Near-field optical data storage using a solid immersion lens,” Appl. Phys. Lett. 65, 388–390 (1994).
[CrossRef]

Trautman, J. K.

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the Diffraction Barrier: Optical Microscopy on a Nanometric Scale,” Science 251, 1468–1470 (1991).
[CrossRef] [PubMed]

Uehara, Y.

K. Ueyanagi, Y. Uehara, Y. Adachi, T. Suzuki, S. Moriyasu, T. Suzuki, K. Wakabayashi, Y. Yamagata, and H. Ohmori, “Fabrication of a hemi-paraboloidal solid immersion mirror and designing of an optical head with the mirror,” Jpn. J. Appl. Phys. 42, 898–903 (2003).
[CrossRef]

Ueyanagi, K.

K. Ueyanagi, Y. Uehara, Y. Adachi, T. Suzuki, S. Moriyasu, T. Suzuki, K. Wakabayashi, Y. Yamagata, and H. Ohmori, “Fabrication of a hemi-paraboloidal solid immersion mirror and designing of an optical head with the mirror,” Jpn. J. Appl. Phys. 42, 898–903 (2003).
[CrossRef]

Urbach, H. P.

F. Zijp, M. B. van der Mark, J. I. Lee, C. A. Verschuren, B. H. W. Hendriks, M. L. M. Balistreri, H. P. Urbach, M. A. H. van der Aa, and A. V. Padiy, “Near field read-out of a 50 GB first-surface disk with NA=1.9 and a proposal for a cover-layer incident, dual-layer near field system,” Proc. SPIE 5380, 209–223 (2004).
[CrossRef]

Verschuren, C. A.

F. Zijp, M. B. van der Mark, J. I. Lee, C. A. Verschuren, B. H. W. Hendriks, M. L. M. Balistreri, H. P. Urbach, M. A. H. van der Aa, and A. V. Padiy, “Near field read-out of a 50 GB first-surface disk with NA=1.9 and a proposal for a cover-layer incident, dual-layer near field system,” Proc. SPIE 5380, 209–223 (2004).
[CrossRef]

Vollkopf, A.

C. Mihalcea, A. Vollkopf, and E. Oesterschulze, “Reproducible Large-Area Microfabrication of Sub-100 nm Apertures on Hollow Tips,” J. Electrochem. Soc. 147, (5) 1970–1972 (2000).
[CrossRef]

Wakabayashi, K.

K. Ueyanagi, Y. Uehara, Y. Adachi, T. Suzuki, S. Moriyasu, T. Suzuki, K. Wakabayashi, Y. Yamagata, and H. Ohmori, “Fabrication of a hemi-paraboloidal solid immersion mirror and designing of an optical head with the mirror,” Jpn. J. Appl. Phys. 42, 898–903 (2003).
[CrossRef]

Weiner, J. S.

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the Diffraction Barrier: Optical Microscopy on a Nanometric Scale,” Science 251, 1468–1470 (1991).
[CrossRef] [PubMed]

Wilder, K.

L. P. Ghislain, V. B. Elings, K. B. Crozier, S. R. Manalis, S. C. Minne, K. Wilder, G. S. Kino, and C. F. Quate, “Near-field photolithography with a solid immersion lens,” Appl. Phys. Lett. 74, 501–503 (1999).
[CrossRef]

Wolf, E.

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system,” Proc. Roy. Soc. Ser. A 253, 358–379 (1959).
[CrossRef]

E. Wolf, “Electromagnetic diffraction in optical systems I. An integral representation of the image field,” Proc. Roy. Soc. Ser. A 253, 349–357 (1959).
[CrossRef]

Wu, Q.

Q. Wu, G. D. Feke, R. D. Grober, and L. P. Ghislain, “Realization of numerical aperture 2.0 using a gallium phosphide solid immersion lens,” Appl. Phys. Lett. 75, 4064–4066 (1999).
[CrossRef]

Yamagata, Y.

K. Ueyanagi, Y. Uehara, Y. Adachi, T. Suzuki, S. Moriyasu, T. Suzuki, K. Wakabayashi, Y. Yamagata, and H. Ohmori, “Fabrication of a hemi-paraboloidal solid immersion mirror and designing of an optical head with the mirror,” Jpn. J. Appl. Phys. 42, 898–903 (2003).
[CrossRef]

Yamamoto, M.

M. Shinoda, K. Saito, T. Ishimoto, T. Kondo, A. Nakaoki, M. Furuki, M. Takeda, and M. Yamamoto, “High-density near-field readout over 100-GB capacity using a solid immersion lens with NA of 2.05,” Proc. SPIE 5069, 306–311 (2003).
[CrossRef]

Yoon, Y.

T. Song, H. Kwon, Y. Yoon, K. Jung, N. Park, and Y. Park, “Aspherical solid immersion lens of integrated optical head for near-field recording,” Jpn. J. Appl. Phys. 42, 1082–1089 (2003).
[CrossRef]

Zijp, F.

F. Zijp, M. B. van der Mark, J. I. Lee, C. A. Verschuren, B. H. W. Hendriks, M. L. M. Balistreri, H. P. Urbach, M. A. H. van der Aa, and A. V. Padiy, “Near field read-out of a 50 GB first-surface disk with NA=1.9 and a proposal for a cover-layer incident, dual-layer near field system,” Proc. SPIE 5380, 209–223 (2004).
[CrossRef]

Appl. Phys. Lett. (5)

S. M. Mansfield and G. S. Kino, “Solid Immersion Microscope,” Appl. Phys. Lett. 57, 2615–2616 (1990).
[CrossRef]

Q. Wu, G. D. Feke, R. D. Grober, and L. P. Ghislain, “Realization of numerical aperture 2.0 using a gallium phosphide solid immersion lens,” Appl. Phys. Lett. 75, 4064–4066 (1999).
[CrossRef]

L. P. Ghislain and V. B. Elings, “Near-field scanning solid immersion microscope,” Appl. Phys. Lett. 72, 2779–2781 (1998).
[CrossRef]

B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, and G. S. Kino, “Near-field optical data storage using a solid immersion lens,” Appl. Phys. Lett. 65, 388–390 (1994).
[CrossRef]

L. P. Ghislain, V. B. Elings, K. B. Crozier, S. R. Manalis, S. C. Minne, K. Wilder, G. S. Kino, and C. F. Quate, “Near-field photolithography with a solid immersion lens,” Appl. Phys. Lett. 74, 501–503 (1999).
[CrossRef]

J. Electrochem. Soc. (1)

C. Mihalcea, A. Vollkopf, and E. Oesterschulze, “Reproducible Large-Area Microfabrication of Sub-100 nm Apertures on Hollow Tips,” J. Electrochem. Soc. 147, (5) 1970–1972 (2000).
[CrossRef]

Jpn. J. Appl. Phys. (3)

T. Song, H. Kwon, Y. Yoon, K. Jung, N. Park, and Y. Park, “Aspherical solid immersion lens of integrated optical head for near-field recording,” Jpn. J. Appl. Phys. 42, 1082–1089 (2003).
[CrossRef]

K. Ueyanagi, Y. Uehara, Y. Adachi, T. Suzuki, S. Moriyasu, T. Suzuki, K. Wakabayashi, Y. Yamagata, and H. Ohmori, “Fabrication of a hemi-paraboloidal solid immersion mirror and designing of an optical head with the mirror,” Jpn. J. Appl. Phys. 42, 898–903 (2003).
[CrossRef]

A. V. Itagi, T. E. Schlesinger, and D. D. Stancil, “Refraction theory for planar waveguides: Modeling of a mode index integrated solid immersion lens,” Jpn. J. Appl. Phys. 42, 740–749 (2003).
[CrossRef]

Phys. Rev. (1)

H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66, 163–182 (1944).
[CrossRef]

Proc. Roy. Soc. Ser. A (2)

E. Wolf, “Electromagnetic diffraction in optical systems I. An integral representation of the image field,” Proc. Roy. Soc. Ser. A 253, 349–357 (1959).
[CrossRef]

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system,” Proc. Roy. Soc. Ser. A 253, 358–379 (1959).
[CrossRef]

Proc. SPIE (2)

M. Shinoda, K. Saito, T. Ishimoto, T. Kondo, A. Nakaoki, M. Furuki, M. Takeda, and M. Yamamoto, “High-density near-field readout over 100-GB capacity using a solid immersion lens with NA of 2.05,” Proc. SPIE 5069, 306–311 (2003).
[CrossRef]

F. Zijp, M. B. van der Mark, J. I. Lee, C. A. Verschuren, B. H. W. Hendriks, M. L. M. Balistreri, H. P. Urbach, M. A. H. van der Aa, and A. V. Padiy, “Near field read-out of a 50 GB first-surface disk with NA=1.9 and a proposal for a cover-layer incident, dual-layer near field system,” Proc. SPIE 5380, 209–223 (2004).
[CrossRef]

Science (1)

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the Diffraction Barrier: Optical Microscopy on a Nanometric Scale,” Science 251, 1468–1470 (1991).
[CrossRef] [PubMed]

Other (2)

H. Nishihara, M. Haruna, and T. Suhara, Optical Integrated Circuits (McGraw-Hill, New York, 1989) Sect. 2.2.4.

M. Ohtsu, M., and H. Hori, Near-field Nano-optics (Kluwer Academic, New York, 1999) 129.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Some techniques for achieving high optical resolution: (a) an aperture of opaque metal at the tip of a Si cantilever or a tapered optical fiber, (b) a solid immersion mirror, (c) a solid immersion lens, and (d) a superSIL.

Fig. 2.
Fig. 2.

(a) FWHM of field intensity for the TE0 mode vs. core thickness for the waveguide described in the text. The best light confinement occurs at the minimum. (b) Normalized field intensity perpendicular to plane of waveguide for a core thickness of 70 nm. The light intensity decays quickly in the outer cladding layers.

Fig. 3.
Fig. 3.

Diagram of the light rays within the PSIM. The dimensions shown correspond to the fabricated devices.

Fig. 4.
Fig. 4.

Calculation of light intensity within the plane of a PSIM by superposition of TE0 waveguide modes. White dashed lines indicate the geometry of the experimental dual-PSIM. An interference pattern is visible with a focal spot size of about a quarter wavelength.

Fig. 5.
Fig. 5.

(a) Dual PSIM’s etched into a Ta2O5 / thermal SiO2 stack on a Si wafer. Red light was launched into the PSIM’s as shown by the arrows. The surface of the PSIM’s was scanned by the SNOM near their intersection to obtain the interference pattern and the focal spot size. The scale bar is 50 μm. (b) PSIM etched into an Al2O3 / Ta2O5 / Al2O3 stack on a ceramic substrate. This device was further processed to make the truncated part of the PSIM accessible for SNOM measurements.

Fig. 6.
Fig. 6.

SNOM image of light focused by a PSIM with an asymmetric waveguide. The interference pattern resembles the calculated one shown in Fig. 4. The scale bar is 3 μm.

Fig. 7.
Fig. 7.

(a) SNOM image of spot at bottom surface of a PSIM with a symmetric waveguide slightly out of focus to exhibit side lobes. The scale bar is 0.5 μm. Scan of light intensity across the focused spot in vertical (b), and horizontal (c) directions showing width of central peak and side lobes. The wavelength is 413 nm.

Fig. 8.
Fig. 8.

Theoretical field intensities in the focal plane of the PSIM for (a) light polarized parallel to the bottom surface of the PSIM and (b) light polarized normal to this surface. Dashed lines indicate position of waveguide core. The FWHM contour is also shown for |Ex|2.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

d 0.51 · λ NA
f ( θ ) = 1 1 cos θ .

Metrics