Abstract

We describe a microoptical planar waveguide solid immersion mirror with high optical throughput, and show that it can focus light to spot sizes of ~90 nm at a wavelength of 413 nm. Scanning near field optical microscope images of the light within the device are in good agreement with a simple theoretical model. This device is accurately mass-produced with lithographic and thin film deposition techniques known from modern integrated circuit processing.

© 2005 Optical Society of America

PDF Article

References

  • View by:
  • |

  1. E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, �??Breaking the Diffraction Barrier: Optical Microscopy on a Nanometric Scale,�?? Science 251, 1468�??1470 (1991).
    [CrossRef]
  2. C. Mihalcea, A. Vollkopf, and E. Oesterschulze, �??Reproducible Large-Area Microfabrication of Sub-100 nm Apertures on Hollow Tips,�?? J. Electrochem. Soc. 147, (5) 1970-1972 (2000).
    [CrossRef]
  3. H. A. Bethe, �??Theory of diffraction by small holes,�?? Phys. Rev. 66, 163�??182 (1944).
    [CrossRef]
  4. M. Ohtsu, M. and H. Hori, Near-field Nano-optics (Kluwer Academic, New York, 1999) 129.
  5. S. M. Mansfield, and G. S. Kino, �??Solid Immersion Microscope,�?? Appl. Phys. Lett. 57, 2615�??2616 (1990).
    [CrossRef]
  6. Q. Wu, G. D. Feke, R. D. Grober, L. P. Ghislain, �??Realization of numerical aperture 2.0 using a gallium phosphide solid immersion lens,�?? Appl. Phys. Lett. 75, 4064�??4066 (1999).
    [CrossRef]
  7. M. Shinoda, K. Saito, T. Ishimoto, T. Kondo, A. Nakaoki, M. Furuki, M. Takeda, and M. Yamamoto, �??High-density near-field readout over 100-GB capacity using a solid immersion lens with NA of 2.05,�?? Proc. SPIE 5069, 306�??311 (2003).
  8. L. P. Ghislain and V. B. Elings, �??Near-field scanning solid immersion microscope,�?? Appl. Phys. Lett. 72, 2779�??2781 (1998).
    [CrossRef]
  9. B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, and G. S. Kino, �??Near-field optical data storage using a solid immersion lens,�?? Appl. Phys. Lett. 65, 388�??390 (1994).
    [CrossRef]
  10. L. P. Ghislain, V. B. Elings, K. B. Crozier, S. R. Manalis, S. C. Minne, K. Wilder, G. S. Kino, and C. F. Quate, �??Near-field photolithography with a solid immersion lens,�?? Appl. Phys. Lett. 74, 501�??503 (1999).
    [CrossRef]
  11. F. Zijp, M. B. van der Mark, J. I. Lee, C. A. Verschuren, B. H. W. Hendriks, M. L. M. Balistreri, H. P. Urbach, M. A. H. van der Aa, and A. V. Padiy, �??Near field read-out of a 50 GB first-surface disk with NA=1.9 and a proposal for a cover-layer incident, dual-layer near field system,�?? Proc. SPIE 5380, 209�??223 (2004).
  12. T. Song, H. Kwon, Y. Yoon, K. Jung, N. Park, and Y. Park, �??Aspherical solid immersion lens of integrated optical head for near-field recording,�?? Jpn. J. Appl. Phys. 42, 1082�??1089 (2003).
    [CrossRef]
  13. K. Ueyanagi, Y. Uehara, Y. Adachi, T. Suzuki, S. Moriyasu, T. Suzuki, K. Wakabayashi, Y. Yamagata, and H. Ohmori, �??Fabrication of a hemi-paraboloidal solid immersion mirror and designing of an optical head with the mirror,�?? Jpn. J. Appl. Phys. 42, 898�??903 (2003).
    [CrossRef]
  14. H. Nishihara, M. Haruna, and T. Suhara, Optical Integrated Circuits (McGraw-Hill, New York, 1989) Sect. 2.2.4.
  15. E. Wolf, �??Electromagnetic diffraction in optical systems I. An integral representation of the image field,�?? Proc. Roy. Soc. Ser. A 253, 349�??357 (1959).
  16. B. Richards, and E. Wolf, �??Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system,�?? Proc. Roy. Soc. Ser. A 253, 358�??379 (1959).
  17. A. V. Itagi, T. E. Schlesinger, and D. D. Stancil, �??Refraction theory for planar waveguides: Modeling of a mode index integrated solid immersion lens,�?? Jpn. J. Appl. Phys. 42, 740�??749 (2003).
    [CrossRef]

Appl. Phys. Lett.

S. M. Mansfield, and G. S. Kino, �??Solid Immersion Microscope,�?? Appl. Phys. Lett. 57, 2615�??2616 (1990).
[CrossRef]

Q. Wu, G. D. Feke, R. D. Grober, L. P. Ghislain, �??Realization of numerical aperture 2.0 using a gallium phosphide solid immersion lens,�?? Appl. Phys. Lett. 75, 4064�??4066 (1999).
[CrossRef]

L. P. Ghislain and V. B. Elings, �??Near-field scanning solid immersion microscope,�?? Appl. Phys. Lett. 72, 2779�??2781 (1998).
[CrossRef]

B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, and G. S. Kino, �??Near-field optical data storage using a solid immersion lens,�?? Appl. Phys. Lett. 65, 388�??390 (1994).
[CrossRef]

L. P. Ghislain, V. B. Elings, K. B. Crozier, S. R. Manalis, S. C. Minne, K. Wilder, G. S. Kino, and C. F. Quate, �??Near-field photolithography with a solid immersion lens,�?? Appl. Phys. Lett. 74, 501�??503 (1999).
[CrossRef]

J. Electrochem. Soc.

C. Mihalcea, A. Vollkopf, and E. Oesterschulze, �??Reproducible Large-Area Microfabrication of Sub-100 nm Apertures on Hollow Tips,�?? J. Electrochem. Soc. 147, (5) 1970-1972 (2000).
[CrossRef]

Jpn. J. Appl. Phys.

T. Song, H. Kwon, Y. Yoon, K. Jung, N. Park, and Y. Park, �??Aspherical solid immersion lens of integrated optical head for near-field recording,�?? Jpn. J. Appl. Phys. 42, 1082�??1089 (2003).
[CrossRef]

K. Ueyanagi, Y. Uehara, Y. Adachi, T. Suzuki, S. Moriyasu, T. Suzuki, K. Wakabayashi, Y. Yamagata, and H. Ohmori, �??Fabrication of a hemi-paraboloidal solid immersion mirror and designing of an optical head with the mirror,�?? Jpn. J. Appl. Phys. 42, 898�??903 (2003).
[CrossRef]

A. V. Itagi, T. E. Schlesinger, and D. D. Stancil, �??Refraction theory for planar waveguides: Modeling of a mode index integrated solid immersion lens,�?? Jpn. J. Appl. Phys. 42, 740�??749 (2003).
[CrossRef]

Phys. Rev.

H. A. Bethe, �??Theory of diffraction by small holes,�?? Phys. Rev. 66, 163�??182 (1944).
[CrossRef]

Proc. Roy. Soc. Ser. A

E. Wolf, �??Electromagnetic diffraction in optical systems I. An integral representation of the image field,�?? Proc. Roy. Soc. Ser. A 253, 349�??357 (1959).

B. Richards, and E. Wolf, �??Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system,�?? Proc. Roy. Soc. Ser. A 253, 358�??379 (1959).

Proc. SPIE

M. Shinoda, K. Saito, T. Ishimoto, T. Kondo, A. Nakaoki, M. Furuki, M. Takeda, and M. Yamamoto, �??High-density near-field readout over 100-GB capacity using a solid immersion lens with NA of 2.05,�?? Proc. SPIE 5069, 306�??311 (2003).

F. Zijp, M. B. van der Mark, J. I. Lee, C. A. Verschuren, B. H. W. Hendriks, M. L. M. Balistreri, H. P. Urbach, M. A. H. van der Aa, and A. V. Padiy, �??Near field read-out of a 50 GB first-surface disk with NA=1.9 and a proposal for a cover-layer incident, dual-layer near field system,�?? Proc. SPIE 5380, 209�??223 (2004).

Science

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, �??Breaking the Diffraction Barrier: Optical Microscopy on a Nanometric Scale,�?? Science 251, 1468�??1470 (1991).
[CrossRef]

Other

H. Nishihara, M. Haruna, and T. Suhara, Optical Integrated Circuits (McGraw-Hill, New York, 1989) Sect. 2.2.4.

M. Ohtsu, M. and H. Hori, Near-field Nano-optics (Kluwer Academic, New York, 1999) 129.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics