Abstract

Ultra-compact device geometries requiring the development of new device technologies are essential for the successful implementation of active devices within photonic crystal systems. The basic operation of an ultra-compact silicon-based photonic crystal light modulator actuated by the thermo-optic modulation of the cut-off frequency about the telecommunication wavelength is discussed. A device design using highly localized high temperature resistive heating of heavily doped heating elements situated directly parallel to the photonic crystal light modulator was developed and evaluated using finite difference time domain and finite element analysis. These devices exhibited high extinction ratios and low insertion losses over a 40 nm frequency band around the telecommunication wavelength of 1550 nm with response times on the order of a few to several microseconds. The reliability implications of using these types of devices are discussed.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. A. Vlasov, N. Moll, and S. J. McNab, “Mode mixing in asymmetric double-trench photonic crystal waveguides,” J. Appl. Phys. 95, 4538–4544 (2004).
    [Crossref]
  2. S. J. McNab, N. Moll, and Y. A. Vlasov, “Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides,” Opt. Express 11, 2927–2939 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-22-2927.
    [Crossref] [PubMed]
  3. M. Notomi, A. Shinya, K. Yamada, J. Takahashi, C. Takahashi, and I. Yokohama, “Structural tuning of guiding modes of line-defect waveguides of silicon-on-insulator photonic crystal slabs,” IEEE J. Quantum Electron. 38, 736–742 (2002).
    [Crossref]
  4. S. Y. Lin, E. Chow, S. G. Johnson, and J. D. Joannopoulos, “Demonstration of highly efficient waveguiding in a photonic crystal slab at the 1.5-μm wavelength,” Opt. Lett. 25, 1297–1299 (2000).
    [Crossref]
  5. M. Loncar, D. Nedeljkovic, T. Doll, J. Vuckovic, A. Scherer, and T. P. Pearsall, “Waveguiding in planar photonic crystals,” Appl. Phys. Lett. 77, 1937–1939 (2000).
    [Crossref]
  6. T. F. Krauss, “Planar photonic crystal waveguide devices for integrated optics,” Phys. Status Solidi A,  197, 688–702 (2003).
    [Crossref]
  7. Y. Sugimoto, N. Ikeda, N. Carlsson, K. Asakawa, N. Kawai, and K. Inoue, “Light-propagation characteristics of Y-branch defect waveguides in AlGaAs-based air-bridge-type two-dimensional photonic crystal slabs,” Opt. Lett. 27, 388–390 (2002).
    [Crossref]
  8. S. Y. Lin, E. Chow, J. Bur, S. G. Johnson, and J. D. Joannopoulos, “Low-loss, wide-angle Y splitter at ∼1.6-μm wavelengths built with a two-dimensional photonic crystal,” Opt. Lett. 27, 1400–1402 (2002).
    [Crossref]
  9. Y. A. Vlasov and S. J. McNab, “Losses in single-mode silicon-on-insulator strip waveguides and bends,” Opt. Express 12, 1622–1631 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-8-1622.
    [Crossref] [PubMed]
  10. Y. A. Vlasov and S. J. McNab, “Waveguiding in silicon-on-insulator photonic crystal and single-mode strip waveguides,” in 2004 IEEE LEOS Annual Meeting Conference Proceedings (Institute of Electrical and Electronics Engineers, New York, 2004), pp. 809–810 Vol 2.
  11. R. M. De La Rue, “Photonic crystals and photonic wires for a nanophotonic future?,” in Proceedings of 2004 6th International Conference on Transparent Optical Networks (Institute of Electrical and Electronics Engineers, New York, 2004), pp. 282–284, Vol 1.
  12. W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout, “Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,” J. Lightwave Technol. 23, 401–412 (2005).
    [Crossref]
  13. E. P. Kosmidou, E. E. Kriezis, and T. D. Tsiboukis, “Analysis of tunable photonic crystal devices comprising liquid crystal materials as defects,” IEEE J. Quantum Electron. 41, 657–665 (2005).
    [Crossref]
  14. F. Du, Y.-Q. Lu, and S.-T. Wu, “Electrically tunable liquid-crystal photonic crystal fiber,” Appl. Phys. Lett. 85, 2181–2183 (2004).
    [Crossref]
  15. C.-Y. Liu and L.-W. Chen, “Tunable photonic crystal waveguide coupler with nematic liquid crystals,” IEEE Photonics Technol. Lett. 16, 1849–1851 (2004).
    [Crossref]
  16. M. W. Geis, S. J. Spector, R. C. Williamson, and T. M. Lyszczarz, “Submicrosecond submilliwatt silicon-on-insulator thermooptic switch,” IEEE Photonics Technol. Lett. 16, 2514–2516 (2004).
    [Crossref]
  17. E. A. Camargo, H. M. H. Chong, and R. M. De La Rue, “2D photonic crystal thermo-optic switch based on AlGaAs/GaAs epitaxial structure,” Opt. Express 12, 588–592 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-4-588.
    [Crossref] [PubMed]
  18. H. M. H. Chong and R. M. De La Rue, “Tuning of photonic crystal waveguide microcavity by thermooptic effect,” IEEE Photonics Technol. Lett. 16, 1528–1530 (2004).
    [Crossref]
  19. Y. Sugimoto, N. Ikeda, N. Carlsson, K. Asakawa, N. Kawai, and K. Inoue, “Fabrication and characterization of different types of two-dimensional AlGaAs photonic crystal slabs,” J. Appl. Phys.. 91, 922–929 (2002).
    [Crossref]
  20. G. P. Agrawal, Fiber-Optic Communication Systems (John Wiley & Sons, New York, NY, 2002).
    [Crossref]
  21. L. Eldada, “Advances in telecom and datacom optical components,” Opt. Eng. 40, 1165–1178, (2001).
    [Crossref]
  22. M. Bourouha, M. Bataineh, and M. Guizani, “Advances in optical switching and networking: past, present, and future,” in Proceedings IEEE SoutheastCon 2002 (Institute of Electrical and Electronics Engineers, New York, 2002), pp. 405–413.
  23. G. E. Jellison and H. H. Burke, “The temperature dependence of the refractive index of silicon at elevated temperatures at several laser wavelengths,” J. Appl. Phys.,  60, 841–843 (1986).
    [Crossref]
  24. G. Cocorullo and I. Rendina, “Thermo-optical modulation at 1.5 μm in silicon etalon,” Electron. Lett. 28, 83–85 (1992).
    [Crossref]
  25. F. G. Della Corte, M. E. Montefusco, L. Moretti, I. Rendina, and G. Cocorullo, “Temperature dependence analysis of the thermo-optic effect in silicon by single and double oscillator models,” J. Appl. Phys. 88, 7115–7119, (2000).
    [Crossref]
  26. G. Cocorullo, F. G. Della Corte, and I. Rendina, “Temperature dependence of the thermo-optic coefficient in crystalline silicon between room temperature and 550 K at the wavelength of 1523 nm,” Appl. Phys. Lett. 74, 3338–3340, (1999).
    [Crossref]
  27. G. Ghosh, “Temperature dispersion of refractive indices in crystalline and amorphous silicon,” Appl. Phys. Lett. 66, 3570–3572, (1995).
    [Crossref]
  28. M. Bertolotti, V. Bogdanov, A. Ferrari, A. Jascow, N. Nazorova, A. Pikhtin, and L. Schirone, “Temperature dependence of the refractive index in semiconductors,” J. Opt. Soc. Am. B 7, 918–922 (1990).
    [Crossref]
  29. H. H. Li, “Refractive index of silicon and germanium and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 9, 561–658 (1980).
    [Crossref]
  30. M. Iodice, F. G. Della Corte, I. Rendina, P. M. Sarro, and M. Bellucci, “Transient analysis of a high-speed thermo-optic modulator integrated in an all-silicon waveguide,” Opt. Eng. (Bellingham)  42, 169–175 (2003).
    [Crossref]
  31. A. Cutolo, M. Iodice, P. Spirito, and L. Zeni, “Silicon electro-optic modulator based on a three terminal device integrated in a low-loss single-mode SOI waveguide,” J. Lightwave Technol. 15, 505–518 (1997).
    [Crossref]
  32. C. Z. Zhao, G. Z. Li, E. K. Liu, Y. Gao, and X. D. Liu, “Silicon on insulator Mach-Zehnder waveguide interferometers operating at 1.3 μm,” Appl. Phys. Lett. 67, 2448–2449 (1995).
    [Crossref]
  33. G. V. Treyz, P. G. May, and J-M. Halbout, “Silicon Mach-Zehnder waveguide interferometers based on the plasma dispersion effect,” Appl. Phys. Lett. 59, 771–773 (1991).
    [Crossref]
  34. G. V. Treyz, “Silicon Mach-Zehnder waveguide interferometers operating at 1.3 μm,” Electron. Lett. 27, 118–120 (1991).
    [Crossref]
  35. U. Fischer, T. Zinke, B. Schuppert, and K. Petermann, “Singlemode optical switches based on SOI waveguides with large cross-section,” Electron. Lett. 30, 406–408 (1994).
    [Crossref]
  36. M. T. Tinker and J-B. Lee, “Thermo-optic photonic crystal light modulator,” Appl. Phys. Lett. 86, 221111-1–3 (2005).
    [Crossref]
  37. M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 253902-1–4 (2001).
    [Crossref] [PubMed]
  38. Q.-A. Huang and N. K. S. Lee, “Analysis and design of polysilicon thermal flexure actuator,” J. Micromech. Microeng. 9, 64–70 (1999).
    [Crossref]
  39. Q.-A. Huang and N. K. S. Lee, “Analytical modeling and optimization for a laterally-driven polysilicon thermal actuator,” Microsystem Technologies 5, 133–137 (1999).
    [Crossref]
  40. L. Que, J.-S. Park, and Y. B. Gianchandani, “Bent-beam electrothermal actuators -- Part I: Single beam and cascaded devices,” J. Microelectromech.Syst. 10, 247–254 (2001).
    [Crossref]
  41. F. P. Fehlner, “Formation of ultrathin oxide films on silicon,” J. Electrochem. Soc. 119, 1723–1727 (1972).
    [Crossref]
  42. Y. Kamigaki and Y. Itoh, “Thermal oxidation of silicon in various oxygen partial pressures diluted by nitrogen,” J. Appl. Phys. 48, 2891–2896 (1977).
    [Crossref]
  43. F. P. Fehlner, “Low temperature oxidation of metals and semiconductors,” J. Electrochem. Soc. 131, 1645–1652 (1984).
    [Crossref]
  44. E. A. Taft, “Thin thermal oxide on silicon,” J. Electrochem. Soc. 131, 2460–2461 (1984).
    [Crossref]
  45. H. Kahn, R. Ballarini, and A. H. Heuer, “Dynamic fatigue of silicon,” Curr. Opin. Solid State Mater. Sci. 8, 71–76 (2004).
    [Crossref]
  46. T. Namazu and Y. Isono,, “High-cycle fatigue test of nanoscale Si and SiO2 wires based on AFM technique,” in Proceedings IEEE Sixteenth Annual International Conference on Micro Electro Mechanical Systems (Institute of Electrical and Electronics Engineers, New York, 2003), pp. 662–665.
    [Crossref]
  47. T. Namazu and Y. Isono,, “High-cycle fatigue damage evaluation for micro-nanoscale single crystal silicon under bending and tensile stressing,” in 17th IEEE International Conference on Micro Electro Mechanical Systems (Institute of Electrical and Electronics Engineers, New York, 2004), pp. 149–152.
  48. M. Madou, Fundamentals of Microfabrication (CRC Press, Boca Raton, Fla.1997).
  49. T.-R. Hsu, MEMS & Microsystems: Design and Manufacture (McGraw-Hill Higher Education, New York, 2002).
  50. Properties of Silicon (INSPEC, Institution of Electrical Engineers, London and New York, 1988).
  51. M. Asheghi, K. Kurabayashi, R. Kasnavi, and K. E. Goodson, “Thermal conduction in doped single-crystal silicon films,” J. Appl. Phys. 91, 5079–5088 (2002).
    [Crossref]
  52. W. C. O’Mara, R. B. Herring, and L. P. Hunt, Handbook of Semiconductor Silicon Technology (Noyes Publications, Park Ridge, N. J., 1990).
  53. G. T. A. Kovacs, Micromachined Transducers Sourcebook (WCB/McGraw-Hill, New York, 1998).
  54. The Engineering Tool Box, “Air properties,” (2005), http://www.engineeringtoolbox.com/air-properties-8_156.html.
  55. J. A. Collins, Failure of Materials in Mechanical Design: Analysis, Prediction, Prevention (John Wiley & Sons, New York1993).

2005 (3)

M. T. Tinker and J-B. Lee, “Thermo-optic photonic crystal light modulator,” Appl. Phys. Lett. 86, 221111-1–3 (2005).
[Crossref]

E. P. Kosmidou, E. E. Kriezis, and T. D. Tsiboukis, “Analysis of tunable photonic crystal devices comprising liquid crystal materials as defects,” IEEE J. Quantum Electron. 41, 657–665 (2005).
[Crossref]

W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout, “Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,” J. Lightwave Technol. 23, 401–412 (2005).
[Crossref]

2004 (8)

E. A. Camargo, H. M. H. Chong, and R. M. De La Rue, “2D photonic crystal thermo-optic switch based on AlGaAs/GaAs epitaxial structure,” Opt. Express 12, 588–592 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-4-588.
[Crossref] [PubMed]

Y. A. Vlasov and S. J. McNab, “Losses in single-mode silicon-on-insulator strip waveguides and bends,” Opt. Express 12, 1622–1631 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-8-1622.
[Crossref] [PubMed]

F. Du, Y.-Q. Lu, and S.-T. Wu, “Electrically tunable liquid-crystal photonic crystal fiber,” Appl. Phys. Lett. 85, 2181–2183 (2004).
[Crossref]

C.-Y. Liu and L.-W. Chen, “Tunable photonic crystal waveguide coupler with nematic liquid crystals,” IEEE Photonics Technol. Lett. 16, 1849–1851 (2004).
[Crossref]

M. W. Geis, S. J. Spector, R. C. Williamson, and T. M. Lyszczarz, “Submicrosecond submilliwatt silicon-on-insulator thermooptic switch,” IEEE Photonics Technol. Lett. 16, 2514–2516 (2004).
[Crossref]

H. Kahn, R. Ballarini, and A. H. Heuer, “Dynamic fatigue of silicon,” Curr. Opin. Solid State Mater. Sci. 8, 71–76 (2004).
[Crossref]

H. M. H. Chong and R. M. De La Rue, “Tuning of photonic crystal waveguide microcavity by thermooptic effect,” IEEE Photonics Technol. Lett. 16, 1528–1530 (2004).
[Crossref]

Y. A. Vlasov, N. Moll, and S. J. McNab, “Mode mixing in asymmetric double-trench photonic crystal waveguides,” J. Appl. Phys. 95, 4538–4544 (2004).
[Crossref]

2003 (3)

T. F. Krauss, “Planar photonic crystal waveguide devices for integrated optics,” Phys. Status Solidi A,  197, 688–702 (2003).
[Crossref]

M. Iodice, F. G. Della Corte, I. Rendina, P. M. Sarro, and M. Bellucci, “Transient analysis of a high-speed thermo-optic modulator integrated in an all-silicon waveguide,” Opt. Eng. (Bellingham)  42, 169–175 (2003).
[Crossref]

S. J. McNab, N. Moll, and Y. A. Vlasov, “Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides,” Opt. Express 11, 2927–2939 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-22-2927.
[Crossref] [PubMed]

2002 (5)

Y. Sugimoto, N. Ikeda, N. Carlsson, K. Asakawa, N. Kawai, and K. Inoue, “Light-propagation characteristics of Y-branch defect waveguides in AlGaAs-based air-bridge-type two-dimensional photonic crystal slabs,” Opt. Lett. 27, 388–390 (2002).
[Crossref]

S. Y. Lin, E. Chow, J. Bur, S. G. Johnson, and J. D. Joannopoulos, “Low-loss, wide-angle Y splitter at ∼1.6-μm wavelengths built with a two-dimensional photonic crystal,” Opt. Lett. 27, 1400–1402 (2002).
[Crossref]

M. Notomi, A. Shinya, K. Yamada, J. Takahashi, C. Takahashi, and I. Yokohama, “Structural tuning of guiding modes of line-defect waveguides of silicon-on-insulator photonic crystal slabs,” IEEE J. Quantum Electron. 38, 736–742 (2002).
[Crossref]

Y. Sugimoto, N. Ikeda, N. Carlsson, K. Asakawa, N. Kawai, and K. Inoue, “Fabrication and characterization of different types of two-dimensional AlGaAs photonic crystal slabs,” J. Appl. Phys.. 91, 922–929 (2002).
[Crossref]

M. Asheghi, K. Kurabayashi, R. Kasnavi, and K. E. Goodson, “Thermal conduction in doped single-crystal silicon films,” J. Appl. Phys. 91, 5079–5088 (2002).
[Crossref]

2001 (3)

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 253902-1–4 (2001).
[Crossref] [PubMed]

L. Que, J.-S. Park, and Y. B. Gianchandani, “Bent-beam electrothermal actuators -- Part I: Single beam and cascaded devices,” J. Microelectromech.Syst. 10, 247–254 (2001).
[Crossref]

L. Eldada, “Advances in telecom and datacom optical components,” Opt. Eng. 40, 1165–1178, (2001).
[Crossref]

2000 (3)

M. Loncar, D. Nedeljkovic, T. Doll, J. Vuckovic, A. Scherer, and T. P. Pearsall, “Waveguiding in planar photonic crystals,” Appl. Phys. Lett. 77, 1937–1939 (2000).
[Crossref]

F. G. Della Corte, M. E. Montefusco, L. Moretti, I. Rendina, and G. Cocorullo, “Temperature dependence analysis of the thermo-optic effect in silicon by single and double oscillator models,” J. Appl. Phys. 88, 7115–7119, (2000).
[Crossref]

S. Y. Lin, E. Chow, S. G. Johnson, and J. D. Joannopoulos, “Demonstration of highly efficient waveguiding in a photonic crystal slab at the 1.5-μm wavelength,” Opt. Lett. 25, 1297–1299 (2000).
[Crossref]

1999 (3)

G. Cocorullo, F. G. Della Corte, and I. Rendina, “Temperature dependence of the thermo-optic coefficient in crystalline silicon between room temperature and 550 K at the wavelength of 1523 nm,” Appl. Phys. Lett. 74, 3338–3340, (1999).
[Crossref]

Q.-A. Huang and N. K. S. Lee, “Analysis and design of polysilicon thermal flexure actuator,” J. Micromech. Microeng. 9, 64–70 (1999).
[Crossref]

Q.-A. Huang and N. K. S. Lee, “Analytical modeling and optimization for a laterally-driven polysilicon thermal actuator,” Microsystem Technologies 5, 133–137 (1999).
[Crossref]

1997 (1)

A. Cutolo, M. Iodice, P. Spirito, and L. Zeni, “Silicon electro-optic modulator based on a three terminal device integrated in a low-loss single-mode SOI waveguide,” J. Lightwave Technol. 15, 505–518 (1997).
[Crossref]

1995 (2)

C. Z. Zhao, G. Z. Li, E. K. Liu, Y. Gao, and X. D. Liu, “Silicon on insulator Mach-Zehnder waveguide interferometers operating at 1.3 μm,” Appl. Phys. Lett. 67, 2448–2449 (1995).
[Crossref]

G. Ghosh, “Temperature dispersion of refractive indices in crystalline and amorphous silicon,” Appl. Phys. Lett. 66, 3570–3572, (1995).
[Crossref]

1994 (1)

U. Fischer, T. Zinke, B. Schuppert, and K. Petermann, “Singlemode optical switches based on SOI waveguides with large cross-section,” Electron. Lett. 30, 406–408 (1994).
[Crossref]

1992 (1)

G. Cocorullo and I. Rendina, “Thermo-optical modulation at 1.5 μm in silicon etalon,” Electron. Lett. 28, 83–85 (1992).
[Crossref]

1991 (2)

G. V. Treyz, P. G. May, and J-M. Halbout, “Silicon Mach-Zehnder waveguide interferometers based on the plasma dispersion effect,” Appl. Phys. Lett. 59, 771–773 (1991).
[Crossref]

G. V. Treyz, “Silicon Mach-Zehnder waveguide interferometers operating at 1.3 μm,” Electron. Lett. 27, 118–120 (1991).
[Crossref]

1990 (1)

1986 (1)

G. E. Jellison and H. H. Burke, “The temperature dependence of the refractive index of silicon at elevated temperatures at several laser wavelengths,” J. Appl. Phys.,  60, 841–843 (1986).
[Crossref]

1984 (2)

F. P. Fehlner, “Low temperature oxidation of metals and semiconductors,” J. Electrochem. Soc. 131, 1645–1652 (1984).
[Crossref]

E. A. Taft, “Thin thermal oxide on silicon,” J. Electrochem. Soc. 131, 2460–2461 (1984).
[Crossref]

1980 (1)

H. H. Li, “Refractive index of silicon and germanium and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 9, 561–658 (1980).
[Crossref]

1977 (1)

Y. Kamigaki and Y. Itoh, “Thermal oxidation of silicon in various oxygen partial pressures diluted by nitrogen,” J. Appl. Phys. 48, 2891–2896 (1977).
[Crossref]

1972 (1)

F. P. Fehlner, “Formation of ultrathin oxide films on silicon,” J. Electrochem. Soc. 119, 1723–1727 (1972).
[Crossref]

Agrawal, G. P.

G. P. Agrawal, Fiber-Optic Communication Systems (John Wiley & Sons, New York, NY, 2002).
[Crossref]

Asakawa, K.

Y. Sugimoto, N. Ikeda, N. Carlsson, K. Asakawa, N. Kawai, and K. Inoue, “Light-propagation characteristics of Y-branch defect waveguides in AlGaAs-based air-bridge-type two-dimensional photonic crystal slabs,” Opt. Lett. 27, 388–390 (2002).
[Crossref]

Y. Sugimoto, N. Ikeda, N. Carlsson, K. Asakawa, N. Kawai, and K. Inoue, “Fabrication and characterization of different types of two-dimensional AlGaAs photonic crystal slabs,” J. Appl. Phys.. 91, 922–929 (2002).
[Crossref]

Asheghi, M.

M. Asheghi, K. Kurabayashi, R. Kasnavi, and K. E. Goodson, “Thermal conduction in doped single-crystal silicon films,” J. Appl. Phys. 91, 5079–5088 (2002).
[Crossref]

Baets, R.

Ballarini, R.

H. Kahn, R. Ballarini, and A. H. Heuer, “Dynamic fatigue of silicon,” Curr. Opin. Solid State Mater. Sci. 8, 71–76 (2004).
[Crossref]

Bataineh, M.

M. Bourouha, M. Bataineh, and M. Guizani, “Advances in optical switching and networking: past, present, and future,” in Proceedings IEEE SoutheastCon 2002 (Institute of Electrical and Electronics Engineers, New York, 2002), pp. 405–413.

Beckx, S.

Bellucci, M.

M. Iodice, F. G. Della Corte, I. Rendina, P. M. Sarro, and M. Bellucci, “Transient analysis of a high-speed thermo-optic modulator integrated in an all-silicon waveguide,” Opt. Eng. (Bellingham)  42, 169–175 (2003).
[Crossref]

Bertolotti, M.

Bienstman, P.

Bogaerts, W.

Bogdanov, V.

Bourouha, M.

M. Bourouha, M. Bataineh, and M. Guizani, “Advances in optical switching and networking: past, present, and future,” in Proceedings IEEE SoutheastCon 2002 (Institute of Electrical and Electronics Engineers, New York, 2002), pp. 405–413.

Bur, J.

Burke, H. H.

G. E. Jellison and H. H. Burke, “The temperature dependence of the refractive index of silicon at elevated temperatures at several laser wavelengths,” J. Appl. Phys.,  60, 841–843 (1986).
[Crossref]

Camargo, E. A.

Carlsson, N.

Y. Sugimoto, N. Ikeda, N. Carlsson, K. Asakawa, N. Kawai, and K. Inoue, “Fabrication and characterization of different types of two-dimensional AlGaAs photonic crystal slabs,” J. Appl. Phys.. 91, 922–929 (2002).
[Crossref]

Y. Sugimoto, N. Ikeda, N. Carlsson, K. Asakawa, N. Kawai, and K. Inoue, “Light-propagation characteristics of Y-branch defect waveguides in AlGaAs-based air-bridge-type two-dimensional photonic crystal slabs,” Opt. Lett. 27, 388–390 (2002).
[Crossref]

Chen, L.-W.

C.-Y. Liu and L.-W. Chen, “Tunable photonic crystal waveguide coupler with nematic liquid crystals,” IEEE Photonics Technol. Lett. 16, 1849–1851 (2004).
[Crossref]

Chong, H. M. H.

Chow, E.

Cocorullo, G.

F. G. Della Corte, M. E. Montefusco, L. Moretti, I. Rendina, and G. Cocorullo, “Temperature dependence analysis of the thermo-optic effect in silicon by single and double oscillator models,” J. Appl. Phys. 88, 7115–7119, (2000).
[Crossref]

G. Cocorullo, F. G. Della Corte, and I. Rendina, “Temperature dependence of the thermo-optic coefficient in crystalline silicon between room temperature and 550 K at the wavelength of 1523 nm,” Appl. Phys. Lett. 74, 3338–3340, (1999).
[Crossref]

G. Cocorullo and I. Rendina, “Thermo-optical modulation at 1.5 μm in silicon etalon,” Electron. Lett. 28, 83–85 (1992).
[Crossref]

Collins, J. A.

J. A. Collins, Failure of Materials in Mechanical Design: Analysis, Prediction, Prevention (John Wiley & Sons, New York1993).

Cutolo, A.

A. Cutolo, M. Iodice, P. Spirito, and L. Zeni, “Silicon electro-optic modulator based on a three terminal device integrated in a low-loss single-mode SOI waveguide,” J. Lightwave Technol. 15, 505–518 (1997).
[Crossref]

De La Rue, R. M.

H. M. H. Chong and R. M. De La Rue, “Tuning of photonic crystal waveguide microcavity by thermooptic effect,” IEEE Photonics Technol. Lett. 16, 1528–1530 (2004).
[Crossref]

E. A. Camargo, H. M. H. Chong, and R. M. De La Rue, “2D photonic crystal thermo-optic switch based on AlGaAs/GaAs epitaxial structure,” Opt. Express 12, 588–592 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-4-588.
[Crossref] [PubMed]

R. M. De La Rue, “Photonic crystals and photonic wires for a nanophotonic future?,” in Proceedings of 2004 6th International Conference on Transparent Optical Networks (Institute of Electrical and Electronics Engineers, New York, 2004), pp. 282–284, Vol 1.

Della Corte, F. G.

M. Iodice, F. G. Della Corte, I. Rendina, P. M. Sarro, and M. Bellucci, “Transient analysis of a high-speed thermo-optic modulator integrated in an all-silicon waveguide,” Opt. Eng. (Bellingham)  42, 169–175 (2003).
[Crossref]

F. G. Della Corte, M. E. Montefusco, L. Moretti, I. Rendina, and G. Cocorullo, “Temperature dependence analysis of the thermo-optic effect in silicon by single and double oscillator models,” J. Appl. Phys. 88, 7115–7119, (2000).
[Crossref]

G. Cocorullo, F. G. Della Corte, and I. Rendina, “Temperature dependence of the thermo-optic coefficient in crystalline silicon between room temperature and 550 K at the wavelength of 1523 nm,” Appl. Phys. Lett. 74, 3338–3340, (1999).
[Crossref]

Doll, T.

M. Loncar, D. Nedeljkovic, T. Doll, J. Vuckovic, A. Scherer, and T. P. Pearsall, “Waveguiding in planar photonic crystals,” Appl. Phys. Lett. 77, 1937–1939 (2000).
[Crossref]

Du, F.

F. Du, Y.-Q. Lu, and S.-T. Wu, “Electrically tunable liquid-crystal photonic crystal fiber,” Appl. Phys. Lett. 85, 2181–2183 (2004).
[Crossref]

Dumon, P.

Eldada, L.

L. Eldada, “Advances in telecom and datacom optical components,” Opt. Eng. 40, 1165–1178, (2001).
[Crossref]

Fehlner, F. P.

F. P. Fehlner, “Low temperature oxidation of metals and semiconductors,” J. Electrochem. Soc. 131, 1645–1652 (1984).
[Crossref]

F. P. Fehlner, “Formation of ultrathin oxide films on silicon,” J. Electrochem. Soc. 119, 1723–1727 (1972).
[Crossref]

Ferrari, A.

Fischer, U.

U. Fischer, T. Zinke, B. Schuppert, and K. Petermann, “Singlemode optical switches based on SOI waveguides with large cross-section,” Electron. Lett. 30, 406–408 (1994).
[Crossref]

Gao, Y.

C. Z. Zhao, G. Z. Li, E. K. Liu, Y. Gao, and X. D. Liu, “Silicon on insulator Mach-Zehnder waveguide interferometers operating at 1.3 μm,” Appl. Phys. Lett. 67, 2448–2449 (1995).
[Crossref]

Geis, M. W.

M. W. Geis, S. J. Spector, R. C. Williamson, and T. M. Lyszczarz, “Submicrosecond submilliwatt silicon-on-insulator thermooptic switch,” IEEE Photonics Technol. Lett. 16, 2514–2516 (2004).
[Crossref]

Ghosh, G.

G. Ghosh, “Temperature dispersion of refractive indices in crystalline and amorphous silicon,” Appl. Phys. Lett. 66, 3570–3572, (1995).
[Crossref]

Gianchandani, Y. B.

L. Que, J.-S. Park, and Y. B. Gianchandani, “Bent-beam electrothermal actuators -- Part I: Single beam and cascaded devices,” J. Microelectromech.Syst. 10, 247–254 (2001).
[Crossref]

Goodson, K. E.

M. Asheghi, K. Kurabayashi, R. Kasnavi, and K. E. Goodson, “Thermal conduction in doped single-crystal silicon films,” J. Appl. Phys. 91, 5079–5088 (2002).
[Crossref]

Guizani, M.

M. Bourouha, M. Bataineh, and M. Guizani, “Advances in optical switching and networking: past, present, and future,” in Proceedings IEEE SoutheastCon 2002 (Institute of Electrical and Electronics Engineers, New York, 2002), pp. 405–413.

Halbout, J-M.

G. V. Treyz, P. G. May, and J-M. Halbout, “Silicon Mach-Zehnder waveguide interferometers based on the plasma dispersion effect,” Appl. Phys. Lett. 59, 771–773 (1991).
[Crossref]

Herring, R. B.

W. C. O’Mara, R. B. Herring, and L. P. Hunt, Handbook of Semiconductor Silicon Technology (Noyes Publications, Park Ridge, N. J., 1990).

Heuer, A. H.

H. Kahn, R. Ballarini, and A. H. Heuer, “Dynamic fatigue of silicon,” Curr. Opin. Solid State Mater. Sci. 8, 71–76 (2004).
[Crossref]

Hsu, T.-R.

T.-R. Hsu, MEMS & Microsystems: Design and Manufacture (McGraw-Hill Higher Education, New York, 2002).

Huang, Q.-A.

Q.-A. Huang and N. K. S. Lee, “Analytical modeling and optimization for a laterally-driven polysilicon thermal actuator,” Microsystem Technologies 5, 133–137 (1999).
[Crossref]

Q.-A. Huang and N. K. S. Lee, “Analysis and design of polysilicon thermal flexure actuator,” J. Micromech. Microeng. 9, 64–70 (1999).
[Crossref]

Hunt, L. P.

W. C. O’Mara, R. B. Herring, and L. P. Hunt, Handbook of Semiconductor Silicon Technology (Noyes Publications, Park Ridge, N. J., 1990).

Ikeda, N.

Y. Sugimoto, N. Ikeda, N. Carlsson, K. Asakawa, N. Kawai, and K. Inoue, “Fabrication and characterization of different types of two-dimensional AlGaAs photonic crystal slabs,” J. Appl. Phys.. 91, 922–929 (2002).
[Crossref]

Y. Sugimoto, N. Ikeda, N. Carlsson, K. Asakawa, N. Kawai, and K. Inoue, “Light-propagation characteristics of Y-branch defect waveguides in AlGaAs-based air-bridge-type two-dimensional photonic crystal slabs,” Opt. Lett. 27, 388–390 (2002).
[Crossref]

Inoue, K.

Y. Sugimoto, N. Ikeda, N. Carlsson, K. Asakawa, N. Kawai, and K. Inoue, “Light-propagation characteristics of Y-branch defect waveguides in AlGaAs-based air-bridge-type two-dimensional photonic crystal slabs,” Opt. Lett. 27, 388–390 (2002).
[Crossref]

Y. Sugimoto, N. Ikeda, N. Carlsson, K. Asakawa, N. Kawai, and K. Inoue, “Fabrication and characterization of different types of two-dimensional AlGaAs photonic crystal slabs,” J. Appl. Phys.. 91, 922–929 (2002).
[Crossref]

Iodice, M.

M. Iodice, F. G. Della Corte, I. Rendina, P. M. Sarro, and M. Bellucci, “Transient analysis of a high-speed thermo-optic modulator integrated in an all-silicon waveguide,” Opt. Eng. (Bellingham)  42, 169–175 (2003).
[Crossref]

A. Cutolo, M. Iodice, P. Spirito, and L. Zeni, “Silicon electro-optic modulator based on a three terminal device integrated in a low-loss single-mode SOI waveguide,” J. Lightwave Technol. 15, 505–518 (1997).
[Crossref]

Isono, Y.

T. Namazu and Y. Isono,, “High-cycle fatigue test of nanoscale Si and SiO2 wires based on AFM technique,” in Proceedings IEEE Sixteenth Annual International Conference on Micro Electro Mechanical Systems (Institute of Electrical and Electronics Engineers, New York, 2003), pp. 662–665.
[Crossref]

T. Namazu and Y. Isono,, “High-cycle fatigue damage evaluation for micro-nanoscale single crystal silicon under bending and tensile stressing,” in 17th IEEE International Conference on Micro Electro Mechanical Systems (Institute of Electrical and Electronics Engineers, New York, 2004), pp. 149–152.

Itoh, Y.

Y. Kamigaki and Y. Itoh, “Thermal oxidation of silicon in various oxygen partial pressures diluted by nitrogen,” J. Appl. Phys. 48, 2891–2896 (1977).
[Crossref]

Jascow, A.

Jellison, G. E.

G. E. Jellison and H. H. Burke, “The temperature dependence of the refractive index of silicon at elevated temperatures at several laser wavelengths,” J. Appl. Phys.,  60, 841–843 (1986).
[Crossref]

Joannopoulos, J. D.

Johnson, S. G.

Kahn, H.

H. Kahn, R. Ballarini, and A. H. Heuer, “Dynamic fatigue of silicon,” Curr. Opin. Solid State Mater. Sci. 8, 71–76 (2004).
[Crossref]

Kamigaki, Y.

Y. Kamigaki and Y. Itoh, “Thermal oxidation of silicon in various oxygen partial pressures diluted by nitrogen,” J. Appl. Phys. 48, 2891–2896 (1977).
[Crossref]

Kasnavi, R.

M. Asheghi, K. Kurabayashi, R. Kasnavi, and K. E. Goodson, “Thermal conduction in doped single-crystal silicon films,” J. Appl. Phys. 91, 5079–5088 (2002).
[Crossref]

Kawai, N.

Y. Sugimoto, N. Ikeda, N. Carlsson, K. Asakawa, N. Kawai, and K. Inoue, “Light-propagation characteristics of Y-branch defect waveguides in AlGaAs-based air-bridge-type two-dimensional photonic crystal slabs,” Opt. Lett. 27, 388–390 (2002).
[Crossref]

Y. Sugimoto, N. Ikeda, N. Carlsson, K. Asakawa, N. Kawai, and K. Inoue, “Fabrication and characterization of different types of two-dimensional AlGaAs photonic crystal slabs,” J. Appl. Phys.. 91, 922–929 (2002).
[Crossref]

Kosmidou, E. P.

E. P. Kosmidou, E. E. Kriezis, and T. D. Tsiboukis, “Analysis of tunable photonic crystal devices comprising liquid crystal materials as defects,” IEEE J. Quantum Electron. 41, 657–665 (2005).
[Crossref]

Kovacs, G. T. A.

G. T. A. Kovacs, Micromachined Transducers Sourcebook (WCB/McGraw-Hill, New York, 1998).

Krauss, T. F.

T. F. Krauss, “Planar photonic crystal waveguide devices for integrated optics,” Phys. Status Solidi A,  197, 688–702 (2003).
[Crossref]

Kriezis, E. E.

E. P. Kosmidou, E. E. Kriezis, and T. D. Tsiboukis, “Analysis of tunable photonic crystal devices comprising liquid crystal materials as defects,” IEEE J. Quantum Electron. 41, 657–665 (2005).
[Crossref]

Kurabayashi, K.

M. Asheghi, K. Kurabayashi, R. Kasnavi, and K. E. Goodson, “Thermal conduction in doped single-crystal silicon films,” J. Appl. Phys. 91, 5079–5088 (2002).
[Crossref]

Lee, J-B.

M. T. Tinker and J-B. Lee, “Thermo-optic photonic crystal light modulator,” Appl. Phys. Lett. 86, 221111-1–3 (2005).
[Crossref]

Lee, N. K. S.

Q.-A. Huang and N. K. S. Lee, “Analysis and design of polysilicon thermal flexure actuator,” J. Micromech. Microeng. 9, 64–70 (1999).
[Crossref]

Q.-A. Huang and N. K. S. Lee, “Analytical modeling and optimization for a laterally-driven polysilicon thermal actuator,” Microsystem Technologies 5, 133–137 (1999).
[Crossref]

Li, G. Z.

C. Z. Zhao, G. Z. Li, E. K. Liu, Y. Gao, and X. D. Liu, “Silicon on insulator Mach-Zehnder waveguide interferometers operating at 1.3 μm,” Appl. Phys. Lett. 67, 2448–2449 (1995).
[Crossref]

Li, H. H.

H. H. Li, “Refractive index of silicon and germanium and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 9, 561–658 (1980).
[Crossref]

Lin, S. Y.

Liu, C.-Y.

C.-Y. Liu and L.-W. Chen, “Tunable photonic crystal waveguide coupler with nematic liquid crystals,” IEEE Photonics Technol. Lett. 16, 1849–1851 (2004).
[Crossref]

Liu, E. K.

C. Z. Zhao, G. Z. Li, E. K. Liu, Y. Gao, and X. D. Liu, “Silicon on insulator Mach-Zehnder waveguide interferometers operating at 1.3 μm,” Appl. Phys. Lett. 67, 2448–2449 (1995).
[Crossref]

Liu, X. D.

C. Z. Zhao, G. Z. Li, E. K. Liu, Y. Gao, and X. D. Liu, “Silicon on insulator Mach-Zehnder waveguide interferometers operating at 1.3 μm,” Appl. Phys. Lett. 67, 2448–2449 (1995).
[Crossref]

Loncar, M.

M. Loncar, D. Nedeljkovic, T. Doll, J. Vuckovic, A. Scherer, and T. P. Pearsall, “Waveguiding in planar photonic crystals,” Appl. Phys. Lett. 77, 1937–1939 (2000).
[Crossref]

Lu, Y.-Q.

F. Du, Y.-Q. Lu, and S.-T. Wu, “Electrically tunable liquid-crystal photonic crystal fiber,” Appl. Phys. Lett. 85, 2181–2183 (2004).
[Crossref]

Luyssaert, B.

Lyszczarz, T. M.

M. W. Geis, S. J. Spector, R. C. Williamson, and T. M. Lyszczarz, “Submicrosecond submilliwatt silicon-on-insulator thermooptic switch,” IEEE Photonics Technol. Lett. 16, 2514–2516 (2004).
[Crossref]

Madou, M.

M. Madou, Fundamentals of Microfabrication (CRC Press, Boca Raton, Fla.1997).

May, P. G.

G. V. Treyz, P. G. May, and J-M. Halbout, “Silicon Mach-Zehnder waveguide interferometers based on the plasma dispersion effect,” Appl. Phys. Lett. 59, 771–773 (1991).
[Crossref]

McNab, S. J.

Y. A. Vlasov and S. J. McNab, “Losses in single-mode silicon-on-insulator strip waveguides and bends,” Opt. Express 12, 1622–1631 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-8-1622.
[Crossref] [PubMed]

Y. A. Vlasov, N. Moll, and S. J. McNab, “Mode mixing in asymmetric double-trench photonic crystal waveguides,” J. Appl. Phys. 95, 4538–4544 (2004).
[Crossref]

S. J. McNab, N. Moll, and Y. A. Vlasov, “Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides,” Opt. Express 11, 2927–2939 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-22-2927.
[Crossref] [PubMed]

Y. A. Vlasov and S. J. McNab, “Waveguiding in silicon-on-insulator photonic crystal and single-mode strip waveguides,” in 2004 IEEE LEOS Annual Meeting Conference Proceedings (Institute of Electrical and Electronics Engineers, New York, 2004), pp. 809–810 Vol 2.

Moll, N.

Montefusco, M. E.

F. G. Della Corte, M. E. Montefusco, L. Moretti, I. Rendina, and G. Cocorullo, “Temperature dependence analysis of the thermo-optic effect in silicon by single and double oscillator models,” J. Appl. Phys. 88, 7115–7119, (2000).
[Crossref]

Moretti, L.

F. G. Della Corte, M. E. Montefusco, L. Moretti, I. Rendina, and G. Cocorullo, “Temperature dependence analysis of the thermo-optic effect in silicon by single and double oscillator models,” J. Appl. Phys. 88, 7115–7119, (2000).
[Crossref]

Namazu, T.

T. Namazu and Y. Isono,, “High-cycle fatigue damage evaluation for micro-nanoscale single crystal silicon under bending and tensile stressing,” in 17th IEEE International Conference on Micro Electro Mechanical Systems (Institute of Electrical and Electronics Engineers, New York, 2004), pp. 149–152.

T. Namazu and Y. Isono,, “High-cycle fatigue test of nanoscale Si and SiO2 wires based on AFM technique,” in Proceedings IEEE Sixteenth Annual International Conference on Micro Electro Mechanical Systems (Institute of Electrical and Electronics Engineers, New York, 2003), pp. 662–665.
[Crossref]

Nazorova, N.

Nedeljkovic, D.

M. Loncar, D. Nedeljkovic, T. Doll, J. Vuckovic, A. Scherer, and T. P. Pearsall, “Waveguiding in planar photonic crystals,” Appl. Phys. Lett. 77, 1937–1939 (2000).
[Crossref]

Notomi, M.

M. Notomi, A. Shinya, K. Yamada, J. Takahashi, C. Takahashi, and I. Yokohama, “Structural tuning of guiding modes of line-defect waveguides of silicon-on-insulator photonic crystal slabs,” IEEE J. Quantum Electron. 38, 736–742 (2002).
[Crossref]

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 253902-1–4 (2001).
[Crossref] [PubMed]

O’Mara, W. C.

W. C. O’Mara, R. B. Herring, and L. P. Hunt, Handbook of Semiconductor Silicon Technology (Noyes Publications, Park Ridge, N. J., 1990).

Park, J.-S.

L. Que, J.-S. Park, and Y. B. Gianchandani, “Bent-beam electrothermal actuators -- Part I: Single beam and cascaded devices,” J. Microelectromech.Syst. 10, 247–254 (2001).
[Crossref]

Pearsall, T. P.

M. Loncar, D. Nedeljkovic, T. Doll, J. Vuckovic, A. Scherer, and T. P. Pearsall, “Waveguiding in planar photonic crystals,” Appl. Phys. Lett. 77, 1937–1939 (2000).
[Crossref]

Petermann, K.

U. Fischer, T. Zinke, B. Schuppert, and K. Petermann, “Singlemode optical switches based on SOI waveguides with large cross-section,” Electron. Lett. 30, 406–408 (1994).
[Crossref]

Pikhtin, A.

Que, L.

L. Que, J.-S. Park, and Y. B. Gianchandani, “Bent-beam electrothermal actuators -- Part I: Single beam and cascaded devices,” J. Microelectromech.Syst. 10, 247–254 (2001).
[Crossref]

Rendina, I.

M. Iodice, F. G. Della Corte, I. Rendina, P. M. Sarro, and M. Bellucci, “Transient analysis of a high-speed thermo-optic modulator integrated in an all-silicon waveguide,” Opt. Eng. (Bellingham)  42, 169–175 (2003).
[Crossref]

F. G. Della Corte, M. E. Montefusco, L. Moretti, I. Rendina, and G. Cocorullo, “Temperature dependence analysis of the thermo-optic effect in silicon by single and double oscillator models,” J. Appl. Phys. 88, 7115–7119, (2000).
[Crossref]

G. Cocorullo, F. G. Della Corte, and I. Rendina, “Temperature dependence of the thermo-optic coefficient in crystalline silicon between room temperature and 550 K at the wavelength of 1523 nm,” Appl. Phys. Lett. 74, 3338–3340, (1999).
[Crossref]

G. Cocorullo and I. Rendina, “Thermo-optical modulation at 1.5 μm in silicon etalon,” Electron. Lett. 28, 83–85 (1992).
[Crossref]

Sarro, P. M.

M. Iodice, F. G. Della Corte, I. Rendina, P. M. Sarro, and M. Bellucci, “Transient analysis of a high-speed thermo-optic modulator integrated in an all-silicon waveguide,” Opt. Eng. (Bellingham)  42, 169–175 (2003).
[Crossref]

Scherer, A.

M. Loncar, D. Nedeljkovic, T. Doll, J. Vuckovic, A. Scherer, and T. P. Pearsall, “Waveguiding in planar photonic crystals,” Appl. Phys. Lett. 77, 1937–1939 (2000).
[Crossref]

Schirone, L.

Schuppert, B.

U. Fischer, T. Zinke, B. Schuppert, and K. Petermann, “Singlemode optical switches based on SOI waveguides with large cross-section,” Electron. Lett. 30, 406–408 (1994).
[Crossref]

Shinya, A.

M. Notomi, A. Shinya, K. Yamada, J. Takahashi, C. Takahashi, and I. Yokohama, “Structural tuning of guiding modes of line-defect waveguides of silicon-on-insulator photonic crystal slabs,” IEEE J. Quantum Electron. 38, 736–742 (2002).
[Crossref]

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 253902-1–4 (2001).
[Crossref] [PubMed]

Spector, S. J.

M. W. Geis, S. J. Spector, R. C. Williamson, and T. M. Lyszczarz, “Submicrosecond submilliwatt silicon-on-insulator thermooptic switch,” IEEE Photonics Technol. Lett. 16, 2514–2516 (2004).
[Crossref]

Spirito, P.

A. Cutolo, M. Iodice, P. Spirito, and L. Zeni, “Silicon electro-optic modulator based on a three terminal device integrated in a low-loss single-mode SOI waveguide,” J. Lightwave Technol. 15, 505–518 (1997).
[Crossref]

Sugimoto, Y.

Y. Sugimoto, N. Ikeda, N. Carlsson, K. Asakawa, N. Kawai, and K. Inoue, “Fabrication and characterization of different types of two-dimensional AlGaAs photonic crystal slabs,” J. Appl. Phys.. 91, 922–929 (2002).
[Crossref]

Y. Sugimoto, N. Ikeda, N. Carlsson, K. Asakawa, N. Kawai, and K. Inoue, “Light-propagation characteristics of Y-branch defect waveguides in AlGaAs-based air-bridge-type two-dimensional photonic crystal slabs,” Opt. Lett. 27, 388–390 (2002).
[Crossref]

Taft, E. A.

E. A. Taft, “Thin thermal oxide on silicon,” J. Electrochem. Soc. 131, 2460–2461 (1984).
[Crossref]

Taillaert, D.

Takahashi, C.

M. Notomi, A. Shinya, K. Yamada, J. Takahashi, C. Takahashi, and I. Yokohama, “Structural tuning of guiding modes of line-defect waveguides of silicon-on-insulator photonic crystal slabs,” IEEE J. Quantum Electron. 38, 736–742 (2002).
[Crossref]

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 253902-1–4 (2001).
[Crossref] [PubMed]

Takahashi, J.

M. Notomi, A. Shinya, K. Yamada, J. Takahashi, C. Takahashi, and I. Yokohama, “Structural tuning of guiding modes of line-defect waveguides of silicon-on-insulator photonic crystal slabs,” IEEE J. Quantum Electron. 38, 736–742 (2002).
[Crossref]

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 253902-1–4 (2001).
[Crossref] [PubMed]

Tinker, M. T.

M. T. Tinker and J-B. Lee, “Thermo-optic photonic crystal light modulator,” Appl. Phys. Lett. 86, 221111-1–3 (2005).
[Crossref]

Treyz, G. V.

G. V. Treyz, “Silicon Mach-Zehnder waveguide interferometers operating at 1.3 μm,” Electron. Lett. 27, 118–120 (1991).
[Crossref]

G. V. Treyz, P. G. May, and J-M. Halbout, “Silicon Mach-Zehnder waveguide interferometers based on the plasma dispersion effect,” Appl. Phys. Lett. 59, 771–773 (1991).
[Crossref]

Tsiboukis, T. D.

E. P. Kosmidou, E. E. Kriezis, and T. D. Tsiboukis, “Analysis of tunable photonic crystal devices comprising liquid crystal materials as defects,” IEEE J. Quantum Electron. 41, 657–665 (2005).
[Crossref]

Van Campenhout, J.

Van Thourhout, D.

Vlasov, Y. A.

Y. A. Vlasov, N. Moll, and S. J. McNab, “Mode mixing in asymmetric double-trench photonic crystal waveguides,” J. Appl. Phys. 95, 4538–4544 (2004).
[Crossref]

Y. A. Vlasov and S. J. McNab, “Losses in single-mode silicon-on-insulator strip waveguides and bends,” Opt. Express 12, 1622–1631 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-8-1622.
[Crossref] [PubMed]

S. J. McNab, N. Moll, and Y. A. Vlasov, “Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides,” Opt. Express 11, 2927–2939 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-22-2927.
[Crossref] [PubMed]

Y. A. Vlasov and S. J. McNab, “Waveguiding in silicon-on-insulator photonic crystal and single-mode strip waveguides,” in 2004 IEEE LEOS Annual Meeting Conference Proceedings (Institute of Electrical and Electronics Engineers, New York, 2004), pp. 809–810 Vol 2.

Vuckovic, J.

M. Loncar, D. Nedeljkovic, T. Doll, J. Vuckovic, A. Scherer, and T. P. Pearsall, “Waveguiding in planar photonic crystals,” Appl. Phys. Lett. 77, 1937–1939 (2000).
[Crossref]

Wiaux, V.

Williamson, R. C.

M. W. Geis, S. J. Spector, R. C. Williamson, and T. M. Lyszczarz, “Submicrosecond submilliwatt silicon-on-insulator thermooptic switch,” IEEE Photonics Technol. Lett. 16, 2514–2516 (2004).
[Crossref]

Wu, S.-T.

F. Du, Y.-Q. Lu, and S.-T. Wu, “Electrically tunable liquid-crystal photonic crystal fiber,” Appl. Phys. Lett. 85, 2181–2183 (2004).
[Crossref]

Yamada, K.

M. Notomi, A. Shinya, K. Yamada, J. Takahashi, C. Takahashi, and I. Yokohama, “Structural tuning of guiding modes of line-defect waveguides of silicon-on-insulator photonic crystal slabs,” IEEE J. Quantum Electron. 38, 736–742 (2002).
[Crossref]

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 253902-1–4 (2001).
[Crossref] [PubMed]

Yokohama, I.

M. Notomi, A. Shinya, K. Yamada, J. Takahashi, C. Takahashi, and I. Yokohama, “Structural tuning of guiding modes of line-defect waveguides of silicon-on-insulator photonic crystal slabs,” IEEE J. Quantum Electron. 38, 736–742 (2002).
[Crossref]

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 253902-1–4 (2001).
[Crossref] [PubMed]

Zeni, L.

A. Cutolo, M. Iodice, P. Spirito, and L. Zeni, “Silicon electro-optic modulator based on a three terminal device integrated in a low-loss single-mode SOI waveguide,” J. Lightwave Technol. 15, 505–518 (1997).
[Crossref]

Zhao, C. Z.

C. Z. Zhao, G. Z. Li, E. K. Liu, Y. Gao, and X. D. Liu, “Silicon on insulator Mach-Zehnder waveguide interferometers operating at 1.3 μm,” Appl. Phys. Lett. 67, 2448–2449 (1995).
[Crossref]

Zinke, T.

U. Fischer, T. Zinke, B. Schuppert, and K. Petermann, “Singlemode optical switches based on SOI waveguides with large cross-section,” Electron. Lett. 30, 406–408 (1994).
[Crossref]

Appl. Phys. Lett. (7)

M. Loncar, D. Nedeljkovic, T. Doll, J. Vuckovic, A. Scherer, and T. P. Pearsall, “Waveguiding in planar photonic crystals,” Appl. Phys. Lett. 77, 1937–1939 (2000).
[Crossref]

F. Du, Y.-Q. Lu, and S.-T. Wu, “Electrically tunable liquid-crystal photonic crystal fiber,” Appl. Phys. Lett. 85, 2181–2183 (2004).
[Crossref]

G. Cocorullo, F. G. Della Corte, and I. Rendina, “Temperature dependence of the thermo-optic coefficient in crystalline silicon between room temperature and 550 K at the wavelength of 1523 nm,” Appl. Phys. Lett. 74, 3338–3340, (1999).
[Crossref]

G. Ghosh, “Temperature dispersion of refractive indices in crystalline and amorphous silicon,” Appl. Phys. Lett. 66, 3570–3572, (1995).
[Crossref]

C. Z. Zhao, G. Z. Li, E. K. Liu, Y. Gao, and X. D. Liu, “Silicon on insulator Mach-Zehnder waveguide interferometers operating at 1.3 μm,” Appl. Phys. Lett. 67, 2448–2449 (1995).
[Crossref]

G. V. Treyz, P. G. May, and J-M. Halbout, “Silicon Mach-Zehnder waveguide interferometers based on the plasma dispersion effect,” Appl. Phys. Lett. 59, 771–773 (1991).
[Crossref]

M. T. Tinker and J-B. Lee, “Thermo-optic photonic crystal light modulator,” Appl. Phys. Lett. 86, 221111-1–3 (2005).
[Crossref]

Curr. Opin. Solid State Mater. Sci. (1)

H. Kahn, R. Ballarini, and A. H. Heuer, “Dynamic fatigue of silicon,” Curr. Opin. Solid State Mater. Sci. 8, 71–76 (2004).
[Crossref]

Electron. Lett. (3)

G. V. Treyz, “Silicon Mach-Zehnder waveguide interferometers operating at 1.3 μm,” Electron. Lett. 27, 118–120 (1991).
[Crossref]

U. Fischer, T. Zinke, B. Schuppert, and K. Petermann, “Singlemode optical switches based on SOI waveguides with large cross-section,” Electron. Lett. 30, 406–408 (1994).
[Crossref]

G. Cocorullo and I. Rendina, “Thermo-optical modulation at 1.5 μm in silicon etalon,” Electron. Lett. 28, 83–85 (1992).
[Crossref]

IEEE J. Quantum Electron. (2)

E. P. Kosmidou, E. E. Kriezis, and T. D. Tsiboukis, “Analysis of tunable photonic crystal devices comprising liquid crystal materials as defects,” IEEE J. Quantum Electron. 41, 657–665 (2005).
[Crossref]

M. Notomi, A. Shinya, K. Yamada, J. Takahashi, C. Takahashi, and I. Yokohama, “Structural tuning of guiding modes of line-defect waveguides of silicon-on-insulator photonic crystal slabs,” IEEE J. Quantum Electron. 38, 736–742 (2002).
[Crossref]

IEEE Photonics Technol. Lett. (3)

C.-Y. Liu and L.-W. Chen, “Tunable photonic crystal waveguide coupler with nematic liquid crystals,” IEEE Photonics Technol. Lett. 16, 1849–1851 (2004).
[Crossref]

M. W. Geis, S. J. Spector, R. C. Williamson, and T. M. Lyszczarz, “Submicrosecond submilliwatt silicon-on-insulator thermooptic switch,” IEEE Photonics Technol. Lett. 16, 2514–2516 (2004).
[Crossref]

H. M. H. Chong and R. M. De La Rue, “Tuning of photonic crystal waveguide microcavity by thermooptic effect,” IEEE Photonics Technol. Lett. 16, 1528–1530 (2004).
[Crossref]

J. Appl. Phys. (5)

F. G. Della Corte, M. E. Montefusco, L. Moretti, I. Rendina, and G. Cocorullo, “Temperature dependence analysis of the thermo-optic effect in silicon by single and double oscillator models,” J. Appl. Phys. 88, 7115–7119, (2000).
[Crossref]

G. E. Jellison and H. H. Burke, “The temperature dependence of the refractive index of silicon at elevated temperatures at several laser wavelengths,” J. Appl. Phys.,  60, 841–843 (1986).
[Crossref]

Y. A. Vlasov, N. Moll, and S. J. McNab, “Mode mixing in asymmetric double-trench photonic crystal waveguides,” J. Appl. Phys. 95, 4538–4544 (2004).
[Crossref]

M. Asheghi, K. Kurabayashi, R. Kasnavi, and K. E. Goodson, “Thermal conduction in doped single-crystal silicon films,” J. Appl. Phys. 91, 5079–5088 (2002).
[Crossref]

Y. Kamigaki and Y. Itoh, “Thermal oxidation of silicon in various oxygen partial pressures diluted by nitrogen,” J. Appl. Phys. 48, 2891–2896 (1977).
[Crossref]

J. Appl. Phys.. (1)

Y. Sugimoto, N. Ikeda, N. Carlsson, K. Asakawa, N. Kawai, and K. Inoue, “Fabrication and characterization of different types of two-dimensional AlGaAs photonic crystal slabs,” J. Appl. Phys.. 91, 922–929 (2002).
[Crossref]

J. Electrochem. Soc. (3)

F. P. Fehlner, “Low temperature oxidation of metals and semiconductors,” J. Electrochem. Soc. 131, 1645–1652 (1984).
[Crossref]

E. A. Taft, “Thin thermal oxide on silicon,” J. Electrochem. Soc. 131, 2460–2461 (1984).
[Crossref]

F. P. Fehlner, “Formation of ultrathin oxide films on silicon,” J. Electrochem. Soc. 119, 1723–1727 (1972).
[Crossref]

J. Lightwave Technol. (2)

A. Cutolo, M. Iodice, P. Spirito, and L. Zeni, “Silicon electro-optic modulator based on a three terminal device integrated in a low-loss single-mode SOI waveguide,” J. Lightwave Technol. 15, 505–518 (1997).
[Crossref]

W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout, “Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,” J. Lightwave Technol. 23, 401–412 (2005).
[Crossref]

J. Microelectromech.Syst. (1)

L. Que, J.-S. Park, and Y. B. Gianchandani, “Bent-beam electrothermal actuators -- Part I: Single beam and cascaded devices,” J. Microelectromech.Syst. 10, 247–254 (2001).
[Crossref]

J. Micromech. Microeng. (1)

Q.-A. Huang and N. K. S. Lee, “Analysis and design of polysilicon thermal flexure actuator,” J. Micromech. Microeng. 9, 64–70 (1999).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. Ref. Data (1)

H. H. Li, “Refractive index of silicon and germanium and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 9, 561–658 (1980).
[Crossref]

Microsystem Technologies (1)

Q.-A. Huang and N. K. S. Lee, “Analytical modeling and optimization for a laterally-driven polysilicon thermal actuator,” Microsystem Technologies 5, 133–137 (1999).
[Crossref]

Opt. Eng. (2)

M. Iodice, F. G. Della Corte, I. Rendina, P. M. Sarro, and M. Bellucci, “Transient analysis of a high-speed thermo-optic modulator integrated in an all-silicon waveguide,” Opt. Eng. (Bellingham)  42, 169–175 (2003).
[Crossref]

L. Eldada, “Advances in telecom and datacom optical components,” Opt. Eng. 40, 1165–1178, (2001).
[Crossref]

Opt. Express (3)

Opt. Lett. (3)

Phys. Rev. Lett. (1)

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 253902-1–4 (2001).
[Crossref] [PubMed]

Phys. Status Solidi A (1)

T. F. Krauss, “Planar photonic crystal waveguide devices for integrated optics,” Phys. Status Solidi A,  197, 688–702 (2003).
[Crossref]

Other (13)

Y. A. Vlasov and S. J. McNab, “Waveguiding in silicon-on-insulator photonic crystal and single-mode strip waveguides,” in 2004 IEEE LEOS Annual Meeting Conference Proceedings (Institute of Electrical and Electronics Engineers, New York, 2004), pp. 809–810 Vol 2.

R. M. De La Rue, “Photonic crystals and photonic wires for a nanophotonic future?,” in Proceedings of 2004 6th International Conference on Transparent Optical Networks (Institute of Electrical and Electronics Engineers, New York, 2004), pp. 282–284, Vol 1.

M. Bourouha, M. Bataineh, and M. Guizani, “Advances in optical switching and networking: past, present, and future,” in Proceedings IEEE SoutheastCon 2002 (Institute of Electrical and Electronics Engineers, New York, 2002), pp. 405–413.

G. P. Agrawal, Fiber-Optic Communication Systems (John Wiley & Sons, New York, NY, 2002).
[Crossref]

W. C. O’Mara, R. B. Herring, and L. P. Hunt, Handbook of Semiconductor Silicon Technology (Noyes Publications, Park Ridge, N. J., 1990).

G. T. A. Kovacs, Micromachined Transducers Sourcebook (WCB/McGraw-Hill, New York, 1998).

The Engineering Tool Box, “Air properties,” (2005), http://www.engineeringtoolbox.com/air-properties-8_156.html.

J. A. Collins, Failure of Materials in Mechanical Design: Analysis, Prediction, Prevention (John Wiley & Sons, New York1993).

T. Namazu and Y. Isono,, “High-cycle fatigue test of nanoscale Si and SiO2 wires based on AFM technique,” in Proceedings IEEE Sixteenth Annual International Conference on Micro Electro Mechanical Systems (Institute of Electrical and Electronics Engineers, New York, 2003), pp. 662–665.
[Crossref]

T. Namazu and Y. Isono,, “High-cycle fatigue damage evaluation for micro-nanoscale single crystal silicon under bending and tensile stressing,” in 17th IEEE International Conference on Micro Electro Mechanical Systems (Institute of Electrical and Electronics Engineers, New York, 2004), pp. 149–152.

M. Madou, Fundamentals of Microfabrication (CRC Press, Boca Raton, Fla.1997).

T.-R. Hsu, MEMS & Microsystems: Design and Manufacture (McGraw-Hill Higher Education, New York, 2002).

Properties of Silicon (INSPEC, Institution of Electrical Engineers, London and New York, 1988).

Supplementary Material (2)

» Media 1: MOV (1780 KB)     
» Media 2: AVI (689 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1.
Fig. 1.

Photonic crystal test structure showing Gaussian TE light source on left (red arrow) and detector on right (green cross).

Fig. 2.
Fig. 2.

(a) Modeled transmission spectrum across photonic crystal band gap at 25 °C and (b) shift of cut-off wavelength with temperature.

Fig 3.
Fig 3.

(a) Schematic diagram of thermo-optic modulator, (b) magnetic field amplitude of the modulator at 25 °C and 1550 nm, and (c) magnetic field amplitude at 425 °C.

Fig. 4.
Fig. 4.

Device design for thermo-optic device showing doped silicon (dark blue), undoped silicon (light blue), aluminum contacts (green), underlying oxide (dark gray) and air (light gray). Voltage applied across the device to drive current (device sectioned into four quadrants for ANSYS simulation).

Fig. 5.
Fig. 5.

(a) Lower magnification and (b) higher magnification of mesh matrices showing highly dense mesh matrix surrounding photonic crystal air holes.

Fig. 6.
Fig. 6.

(a) Lower magnification and (b) higher magnification of the temperature profiles showing the relatively uniform temperature distribution across the modulator, the rapid fall off in temperature across the device, and the shallow temperature profile beneath the device.

Fig. 7.
Fig. 7.

Refractive index profile generated from temperature profile shown directly above.

Fig. 8.
Fig. 8.

(a) Magnetic field amplitude of thermo-optic modulator at 25 °C and (b) with the actual temperature gradient applied to heat the modulator to 420 °C at 1550 nm [Click on Fig. 8a (513 kB) and Fig. 8b (689 kB) to start movies].

Fig. 9.
Fig. 9.

Transmission spectra of modulated device.

Fig. 10.
Fig. 10.

(a) Oblique view of magnetic field amplitude of thermo-optic modulator generated by 3D FDTD at 1550 nm and 25 °C, (b) cross sectional view of modulator at 25 °C, (c) oblique view of modulator at 420 °C, and (d) cross sectional view of modulator at 420 °C.

Fig. 11.
Fig. 11.

(a) Transient analysis test structure and (b) steady-state thermal response of system [Click on Fig. 11(b) to start movie (1823 kB) and view transient response].

Fig. 12.
Fig. 12.

(a) ON characteristic with rise time of 5.6 μs, (b) OFF characteristic with fall time of 3.5 μs, (c) 10 μs ON/OFF characteristic, and d) 6 μs ON/OFF characteristic.

Fig. 13.
Fig. 13.

(a) Lower magnification of σ3 principal normal stress state and (b) higher magnification of σ3 stress state showing maximum stress concentrated at bottom of photonic crystal air hole.

Tables (1)

Tables Icon

Table 1. Material Properties Used for ANSYS Simulation

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

P = I 2 R

Metrics