Abstract

Acousto-optic imaging of thick biological tissues can be obtained in real-time with an adaptive-wavefront holographic setup, where the holographic media is a self-developping photorefractive crystal. As a consequence, the interference signal resulting from the acousto-optic effect can be easily collected with a high etendue and fast single photodetector. We present a statistical model of the field propagating through the scattering media and show why the various acoustic frequency components contained in the speckle output pattern are uncorrelated. We then give a detailed description of the signal measured through the photorefractive effect, in order to explain the quadratic pressure response observed for the two commonly used configurations setup e.g an amplitude or a phase modulation of the ultrasound.

© 2005 Optical Society of America

Full Article  |  PDF Article
Related Articles
Detection of ultrasound-modulated photons in diffuse media using the photorefractive effect

Todd W. Murray, Lei Sui, Gopi Maguluri, Ronald A. Roy, Alex Nieva, Florian Blonigen, and Charles A. DiMarzio
Opt. Lett. 29(21) 2509-2511 (2004)

Computations of the acoustically induced phase shifts of optical paths in acoustophotonic imaging with photorefractive-based detection

Florian J. Blonigen, Alex Nieva, Charles A. DiMarzio, Sébastien Manneville, Lei Sui, Gopi Maguluri, Todd W. Murray, and Ronald A. Roy
Appl. Opt. 44(18) 3735-3746 (2005)

Imaging in diffuse media with pulsed-ultrasound-modulated light and the photorefractive effect

Lei Sui, Ronald A. Roy, Charles A. DiMarzio, and Todd W. Murray
Appl. Opt. 44(19) 4041-4048 (2005)

References

  • View by:
  • |
  • |
  • |

  1. L. Wang, S. Jacques, and X. Zhao, “Continuous wave ultrasonic modulation of scattered light to image objects in turbid media.” Opt. Lett. 20, 629 (1995).
    [Crossref] [PubMed]
  2. A. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (IEEE Press, New York., 1988).
  3. W. Leutz and G. Maret, “Ultrasonic modulation of multiply scattered light,” Physica B 204, 14 (1995).
    [Crossref]
  4. M. Kempe, M. Larionov, D. Zaslavsky, and A. Z. Genack, “Acousto-optic tomography with multiple scattered light,” J. Opt. Soc. Am. B 14, 1151–1158 (1997).
    [Crossref]
  5. L. Wang, “Mechanisms of ultrasonic modulation of multiply scattered coherent light: a analytic model,” Phys. Rev. Lett. 87, 1 (2001).
    [Crossref]
  6. A. Lev and B. Sfez, “in vivo demonstration of ultrasound-modulated light technique,” J. Opt. Soc. Am. A 20(12), 2347–2354 (2003).
    [Crossref]
  7. M. Gross, P. Goy, B. C. Forget, M. Atlan, F. Ramaz, A. C. Boccara, and A. K. Dunn, “Heterodyne detection of multiply scattered monochromatic light with a multipixel detector,” to appear in Opt. Lett. (2005).
    [Crossref]
  8. A. Lev, Z. Kotler, and B. Sfez, “Ultrasound tagged light imaging in turbid media in a reflectance geometry,” Opt. Lett. 25, 378 (2000).
    [Crossref]
  9. S. Lévêque, A. C. Boccara, M. Lebec, and H. Saint-Jalmes, “Ultrasonic tagging of phton paths in scattering media: parallel speckle modulation processing,” Opt. Lett. 24(3), 181 (1999).
    [Crossref]
  10. M. Gross, P. Goy, and M. Al-Koussa, “Shot-noise detection of ultrasound-tagged photons in ultrasound-modulated optical imaging,” Opt. Lett. 28(24) (2003).
    [Crossref] [PubMed]
  11. T. W. Murray, L. Sui, G. Maguluri, R. A. Roy, A. Nieva, F. Blonigen, and C. A. DiMarzio, “Detection of ultrasound-modulated photons in diffuse media using the photorefractive effect,” Opt. Lett. 29(21), 2509 (2004).
    [Crossref] [PubMed]
  12. F. Ramaz, B. C. Forget, M. Atlan, A. C. Boccara, M. Gross, P. Delaye, and G. Roosen, “Photorefractive detection of tagged photons in ultrasound modulated optical tomography of thick biological tissues,” Opt. Express 12(22), 5469–5474 (2004).
    [Crossref] [PubMed]
  13. E. Bossy, L. Sui, T. W. Murray, and R. A. Roy, “Fusion of conventional ultrasound imaging and acousto-optic sensing by use of a standard pulsed-ultrasound scanner,” Opt. Letters 30(7), 744 (2005).
    [Crossref]
  14. F. J. Blonigen, A. Nieva, C. DiMarzio, S. Manneville, L. Sui, G. Maguluri, T. W. Murray, and R. A. Roy, “Computations of the acoustically induced phase shifts of optical paths in acoustophotonic imaging with photorefractive-based detection,” Appl. Opt. 44(18), 3735 (2005).
    [Crossref] [PubMed]
  15. L. Sui, R. A. Roy, C. DiMarzio, and T. W. Murray, “Imaging in diffuse media with pulsed-ultrasound-modulated light and the photorefractive effect,” Appl. Opt. 44(19), 4041 (2005).
    [Crossref] [PubMed]
  16. M. Atlan, B.C. Forget, F. Ramaz, A.C. Boccara, and M. Gross, “Pulsed acousto-optic imaging in dynamic scattering media with heterodyne parallel speckle detection,” Opt. Lett. 30(11), 1360–1362 (2005).
    [Crossref] [PubMed]
  17. L. Wang, “Mechanisms of ultrasonic modulation of multiply scattered coherent light: a Monte Carlo model,” Opt. Lett. 26, 1191 (2001).
    [Crossref]
  18. P. Delaye, L. A. de Montmorillon, and G. Roosen, “Transmission of time modulated optical signals throug an absorbing photorefractive crystal,” Opt. Commun. 118, 154 (1995).
    [Crossref]
  19. A. Hermanns, C. Benkert, D.M. Lininger, and D.Z. Anderson, “The transfer function and impulse response of pho-tortefractive two beam coupling,” IEEE J. Quantum Electron. 28, 750 (1992).
    [Crossref]
  20. F.M. Davidson and C. Field, “Coherent homodyne optical communication receivers with photorefractive optical combiners,” J. Lightwave Technol. 12, 1207 (1994).
    [Crossref]
  21. A. L. an and B. G. Sfez, “Direct, noninvasive detection of photon density in turbid media,” Opt. Lett. 27(7), 473 (2002).
    [Crossref]
  22. L. Solymar, D. Webb, and A. Grunnet-Jepsen, The physics and applications of photorefractive materials (Clarendon Press, Oxford, 1996).
  23. A. Yariv, Quantum electronics (John Wiley and Sons, New York, 1989).
  24. G. Hamel de Montchenault and J.P. Huignard, “Two-wave mixing with time-modulated signal in Bi12SiO20 theory and application to homodyne wave-front detection,” J. Appl. Phys. 63, 624 (1988).
    [Crossref]
  25. I. Lahiri, L. Pyrak-Nolte, D.D. Nolte, M. Melloch, R. Kruger, G. Bacher, and M. Klein, “Laser-based ultrasound detection using photorefractive quantum wells,” Appl. Phys. Lett. 73, 1041 (1998).
    [Crossref]
  26. D. Webb and L. Solymar, “Amplification of temporally modulated signal beams by two-wave mixing in Bi12SiO20,” J. Opt. Soc. Am. B 7, 2369 (1990).
    [Crossref]
  27. S. Bian and J. Frehlich, “Phase modulated two wave mixing in crystals with long photocarriers lifetimes,” J. Mod. Opt. 43(1185) (1996).
    [Crossref]
  28. L. A. de Montmorillon, P. Delaye, J. Launay, and G. Roosen, “Novel theoretical aspects on photorefractive ultrasonic detection and implementation of a sensor with an optimum sensitivity,” J. Appl. Phys. 82, 5913–5922 (1997).
    [Crossref]
  29. P. Delaye, S. de Rossi, and G. Roosen, “Photorefractive vibrometer for the detection of high amplitude vibrations on rough surfaces,” J. Opt. A: Pure and Applied Optics 2, 209–215 (2000).
    [Crossref]
  30. P. Delaye, A. Blouin, D. Drolet, L. A. de Montmorillon, G. Roosen, and J. Monchalin, “Detection of ultrasonic motion of a scattering surface by photorefractive InP :Fe under an applied dc field,” J. Opt. Soc. Am. B 14(7), 1723 (1997).
    [Crossref]
  31. P. Delaye and G. Roosen., “Evaluation of a photorefractive two beam coupling novelty filter,” Opt. Commun. 165, 133–151 (1999).
    [Crossref]

2005 (5)

2004 (2)

2003 (2)

A. Lev and B. Sfez, “in vivo demonstration of ultrasound-modulated light technique,” J. Opt. Soc. Am. A 20(12), 2347–2354 (2003).
[Crossref]

M. Gross, P. Goy, and M. Al-Koussa, “Shot-noise detection of ultrasound-tagged photons in ultrasound-modulated optical imaging,” Opt. Lett. 28(24) (2003).
[Crossref] [PubMed]

2002 (1)

2001 (2)

L. Wang, “Mechanisms of ultrasonic modulation of multiply scattered coherent light: a Monte Carlo model,” Opt. Lett. 26, 1191 (2001).
[Crossref]

L. Wang, “Mechanisms of ultrasonic modulation of multiply scattered coherent light: a analytic model,” Phys. Rev. Lett. 87, 1 (2001).
[Crossref]

2000 (2)

P. Delaye, S. de Rossi, and G. Roosen, “Photorefractive vibrometer for the detection of high amplitude vibrations on rough surfaces,” J. Opt. A: Pure and Applied Optics 2, 209–215 (2000).
[Crossref]

A. Lev, Z. Kotler, and B. Sfez, “Ultrasound tagged light imaging in turbid media in a reflectance geometry,” Opt. Lett. 25, 378 (2000).
[Crossref]

1999 (2)

1998 (1)

I. Lahiri, L. Pyrak-Nolte, D.D. Nolte, M. Melloch, R. Kruger, G. Bacher, and M. Klein, “Laser-based ultrasound detection using photorefractive quantum wells,” Appl. Phys. Lett. 73, 1041 (1998).
[Crossref]

1997 (3)

L. A. de Montmorillon, P. Delaye, J. Launay, and G. Roosen, “Novel theoretical aspects on photorefractive ultrasonic detection and implementation of a sensor with an optimum sensitivity,” J. Appl. Phys. 82, 5913–5922 (1997).
[Crossref]

M. Kempe, M. Larionov, D. Zaslavsky, and A. Z. Genack, “Acousto-optic tomography with multiple scattered light,” J. Opt. Soc. Am. B 14, 1151–1158 (1997).
[Crossref]

P. Delaye, A. Blouin, D. Drolet, L. A. de Montmorillon, G. Roosen, and J. Monchalin, “Detection of ultrasonic motion of a scattering surface by photorefractive InP :Fe under an applied dc field,” J. Opt. Soc. Am. B 14(7), 1723 (1997).
[Crossref]

1996 (1)

S. Bian and J. Frehlich, “Phase modulated two wave mixing in crystals with long photocarriers lifetimes,” J. Mod. Opt. 43(1185) (1996).
[Crossref]

1995 (3)

W. Leutz and G. Maret, “Ultrasonic modulation of multiply scattered light,” Physica B 204, 14 (1995).
[Crossref]

P. Delaye, L. A. de Montmorillon, and G. Roosen, “Transmission of time modulated optical signals throug an absorbing photorefractive crystal,” Opt. Commun. 118, 154 (1995).
[Crossref]

L. Wang, S. Jacques, and X. Zhao, “Continuous wave ultrasonic modulation of scattered light to image objects in turbid media.” Opt. Lett. 20, 629 (1995).
[Crossref] [PubMed]

1994 (1)

F.M. Davidson and C. Field, “Coherent homodyne optical communication receivers with photorefractive optical combiners,” J. Lightwave Technol. 12, 1207 (1994).
[Crossref]

1992 (1)

A. Hermanns, C. Benkert, D.M. Lininger, and D.Z. Anderson, “The transfer function and impulse response of pho-tortefractive two beam coupling,” IEEE J. Quantum Electron. 28, 750 (1992).
[Crossref]

1990 (1)

1988 (1)

G. Hamel de Montchenault and J.P. Huignard, “Two-wave mixing with time-modulated signal in Bi12SiO20 theory and application to homodyne wave-front detection,” J. Appl. Phys. 63, 624 (1988).
[Crossref]

Al-Koussa, M.

M. Gross, P. Goy, and M. Al-Koussa, “Shot-noise detection of ultrasound-tagged photons in ultrasound-modulated optical imaging,” Opt. Lett. 28(24) (2003).
[Crossref] [PubMed]

an, A. L.

Anderson, D.Z.

A. Hermanns, C. Benkert, D.M. Lininger, and D.Z. Anderson, “The transfer function and impulse response of pho-tortefractive two beam coupling,” IEEE J. Quantum Electron. 28, 750 (1992).
[Crossref]

Atlan, M.

Bacher, G.

I. Lahiri, L. Pyrak-Nolte, D.D. Nolte, M. Melloch, R. Kruger, G. Bacher, and M. Klein, “Laser-based ultrasound detection using photorefractive quantum wells,” Appl. Phys. Lett. 73, 1041 (1998).
[Crossref]

Benkert, C.

A. Hermanns, C. Benkert, D.M. Lininger, and D.Z. Anderson, “The transfer function and impulse response of pho-tortefractive two beam coupling,” IEEE J. Quantum Electron. 28, 750 (1992).
[Crossref]

Bian, S.

S. Bian and J. Frehlich, “Phase modulated two wave mixing in crystals with long photocarriers lifetimes,” J. Mod. Opt. 43(1185) (1996).
[Crossref]

Blonigen, F.

Blonigen, F. J.

Blouin, A.

Boccara, A. C.

Boccara, A.C.

Bossy, E.

E. Bossy, L. Sui, T. W. Murray, and R. A. Roy, “Fusion of conventional ultrasound imaging and acousto-optic sensing by use of a standard pulsed-ultrasound scanner,” Opt. Letters 30(7), 744 (2005).
[Crossref]

Davidson, F.M.

F.M. Davidson and C. Field, “Coherent homodyne optical communication receivers with photorefractive optical combiners,” J. Lightwave Technol. 12, 1207 (1994).
[Crossref]

de Montmorillon, L. A.

P. Delaye, A. Blouin, D. Drolet, L. A. de Montmorillon, G. Roosen, and J. Monchalin, “Detection of ultrasonic motion of a scattering surface by photorefractive InP :Fe under an applied dc field,” J. Opt. Soc. Am. B 14(7), 1723 (1997).
[Crossref]

L. A. de Montmorillon, P. Delaye, J. Launay, and G. Roosen, “Novel theoretical aspects on photorefractive ultrasonic detection and implementation of a sensor with an optimum sensitivity,” J. Appl. Phys. 82, 5913–5922 (1997).
[Crossref]

P. Delaye, L. A. de Montmorillon, and G. Roosen, “Transmission of time modulated optical signals throug an absorbing photorefractive crystal,” Opt. Commun. 118, 154 (1995).
[Crossref]

de Rossi, S.

P. Delaye, S. de Rossi, and G. Roosen, “Photorefractive vibrometer for the detection of high amplitude vibrations on rough surfaces,” J. Opt. A: Pure and Applied Optics 2, 209–215 (2000).
[Crossref]

Delaye, P.

F. Ramaz, B. C. Forget, M. Atlan, A. C. Boccara, M. Gross, P. Delaye, and G. Roosen, “Photorefractive detection of tagged photons in ultrasound modulated optical tomography of thick biological tissues,” Opt. Express 12(22), 5469–5474 (2004).
[Crossref] [PubMed]

P. Delaye, S. de Rossi, and G. Roosen, “Photorefractive vibrometer for the detection of high amplitude vibrations on rough surfaces,” J. Opt. A: Pure and Applied Optics 2, 209–215 (2000).
[Crossref]

P. Delaye and G. Roosen., “Evaluation of a photorefractive two beam coupling novelty filter,” Opt. Commun. 165, 133–151 (1999).
[Crossref]

P. Delaye, A. Blouin, D. Drolet, L. A. de Montmorillon, G. Roosen, and J. Monchalin, “Detection of ultrasonic motion of a scattering surface by photorefractive InP :Fe under an applied dc field,” J. Opt. Soc. Am. B 14(7), 1723 (1997).
[Crossref]

L. A. de Montmorillon, P. Delaye, J. Launay, and G. Roosen, “Novel theoretical aspects on photorefractive ultrasonic detection and implementation of a sensor with an optimum sensitivity,” J. Appl. Phys. 82, 5913–5922 (1997).
[Crossref]

P. Delaye, L. A. de Montmorillon, and G. Roosen, “Transmission of time modulated optical signals throug an absorbing photorefractive crystal,” Opt. Commun. 118, 154 (1995).
[Crossref]

DiMarzio, C.

DiMarzio, C. A.

Drolet, D.

Dunn, A. K.

M. Gross, P. Goy, B. C. Forget, M. Atlan, F. Ramaz, A. C. Boccara, and A. K. Dunn, “Heterodyne detection of multiply scattered monochromatic light with a multipixel detector,” to appear in Opt. Lett. (2005).
[Crossref]

Field, C.

F.M. Davidson and C. Field, “Coherent homodyne optical communication receivers with photorefractive optical combiners,” J. Lightwave Technol. 12, 1207 (1994).
[Crossref]

Forget, B. C.

M. Gross, P. Goy, B. C. Forget, M. Atlan, F. Ramaz, A. C. Boccara, and A. K. Dunn, “Heterodyne detection of multiply scattered monochromatic light with a multipixel detector,” to appear in Opt. Lett. (2005).
[Crossref]

F. Ramaz, B. C. Forget, M. Atlan, A. C. Boccara, M. Gross, P. Delaye, and G. Roosen, “Photorefractive detection of tagged photons in ultrasound modulated optical tomography of thick biological tissues,” Opt. Express 12(22), 5469–5474 (2004).
[Crossref] [PubMed]

Forget, B.C.

Frehlich, J.

S. Bian and J. Frehlich, “Phase modulated two wave mixing in crystals with long photocarriers lifetimes,” J. Mod. Opt. 43(1185) (1996).
[Crossref]

Genack, A. Z.

M. Kempe, M. Larionov, D. Zaslavsky, and A. Z. Genack, “Acousto-optic tomography with multiple scattered light,” J. Opt. Soc. Am. B 14, 1151–1158 (1997).
[Crossref]

Goy, P.

M. Gross, P. Goy, B. C. Forget, M. Atlan, F. Ramaz, A. C. Boccara, and A. K. Dunn, “Heterodyne detection of multiply scattered monochromatic light with a multipixel detector,” to appear in Opt. Lett. (2005).
[Crossref]

M. Gross, P. Goy, and M. Al-Koussa, “Shot-noise detection of ultrasound-tagged photons in ultrasound-modulated optical imaging,” Opt. Lett. 28(24) (2003).
[Crossref] [PubMed]

Gross, M.

M. Gross, P. Goy, B. C. Forget, M. Atlan, F. Ramaz, A. C. Boccara, and A. K. Dunn, “Heterodyne detection of multiply scattered monochromatic light with a multipixel detector,” to appear in Opt. Lett. (2005).
[Crossref]

M. Atlan, B.C. Forget, F. Ramaz, A.C. Boccara, and M. Gross, “Pulsed acousto-optic imaging in dynamic scattering media with heterodyne parallel speckle detection,” Opt. Lett. 30(11), 1360–1362 (2005).
[Crossref] [PubMed]

F. Ramaz, B. C. Forget, M. Atlan, A. C. Boccara, M. Gross, P. Delaye, and G. Roosen, “Photorefractive detection of tagged photons in ultrasound modulated optical tomography of thick biological tissues,” Opt. Express 12(22), 5469–5474 (2004).
[Crossref] [PubMed]

M. Gross, P. Goy, and M. Al-Koussa, “Shot-noise detection of ultrasound-tagged photons in ultrasound-modulated optical imaging,” Opt. Lett. 28(24) (2003).
[Crossref] [PubMed]

Grunnet-Jepsen, A.

L. Solymar, D. Webb, and A. Grunnet-Jepsen, The physics and applications of photorefractive materials (Clarendon Press, Oxford, 1996).

Hamel de Montchenault, G.

G. Hamel de Montchenault and J.P. Huignard, “Two-wave mixing with time-modulated signal in Bi12SiO20 theory and application to homodyne wave-front detection,” J. Appl. Phys. 63, 624 (1988).
[Crossref]

Hermanns, A.

A. Hermanns, C. Benkert, D.M. Lininger, and D.Z. Anderson, “The transfer function and impulse response of pho-tortefractive two beam coupling,” IEEE J. Quantum Electron. 28, 750 (1992).
[Crossref]

Huignard, J.P.

G. Hamel de Montchenault and J.P. Huignard, “Two-wave mixing with time-modulated signal in Bi12SiO20 theory and application to homodyne wave-front detection,” J. Appl. Phys. 63, 624 (1988).
[Crossref]

Jacques, S.

Kak, A.

A. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (IEEE Press, New York., 1988).

Kempe, M.

M. Kempe, M. Larionov, D. Zaslavsky, and A. Z. Genack, “Acousto-optic tomography with multiple scattered light,” J. Opt. Soc. Am. B 14, 1151–1158 (1997).
[Crossref]

Klein, M.

I. Lahiri, L. Pyrak-Nolte, D.D. Nolte, M. Melloch, R. Kruger, G. Bacher, and M. Klein, “Laser-based ultrasound detection using photorefractive quantum wells,” Appl. Phys. Lett. 73, 1041 (1998).
[Crossref]

Kotler, Z.

Kruger, R.

I. Lahiri, L. Pyrak-Nolte, D.D. Nolte, M. Melloch, R. Kruger, G. Bacher, and M. Klein, “Laser-based ultrasound detection using photorefractive quantum wells,” Appl. Phys. Lett. 73, 1041 (1998).
[Crossref]

Lahiri, I.

I. Lahiri, L. Pyrak-Nolte, D.D. Nolte, M. Melloch, R. Kruger, G. Bacher, and M. Klein, “Laser-based ultrasound detection using photorefractive quantum wells,” Appl. Phys. Lett. 73, 1041 (1998).
[Crossref]

Larionov, M.

M. Kempe, M. Larionov, D. Zaslavsky, and A. Z. Genack, “Acousto-optic tomography with multiple scattered light,” J. Opt. Soc. Am. B 14, 1151–1158 (1997).
[Crossref]

Launay, J.

L. A. de Montmorillon, P. Delaye, J. Launay, and G. Roosen, “Novel theoretical aspects on photorefractive ultrasonic detection and implementation of a sensor with an optimum sensitivity,” J. Appl. Phys. 82, 5913–5922 (1997).
[Crossref]

Lebec, M.

Leutz, W.

W. Leutz and G. Maret, “Ultrasonic modulation of multiply scattered light,” Physica B 204, 14 (1995).
[Crossref]

Lev, A.

Lévêque, S.

Lininger, D.M.

A. Hermanns, C. Benkert, D.M. Lininger, and D.Z. Anderson, “The transfer function and impulse response of pho-tortefractive two beam coupling,” IEEE J. Quantum Electron. 28, 750 (1992).
[Crossref]

Maguluri, G.

Manneville, S.

Maret, G.

W. Leutz and G. Maret, “Ultrasonic modulation of multiply scattered light,” Physica B 204, 14 (1995).
[Crossref]

Melloch, M.

I. Lahiri, L. Pyrak-Nolte, D.D. Nolte, M. Melloch, R. Kruger, G. Bacher, and M. Klein, “Laser-based ultrasound detection using photorefractive quantum wells,” Appl. Phys. Lett. 73, 1041 (1998).
[Crossref]

Monchalin, J.

Murray, T. W.

Nieva, A.

Nolte, D.D.

I. Lahiri, L. Pyrak-Nolte, D.D. Nolte, M. Melloch, R. Kruger, G. Bacher, and M. Klein, “Laser-based ultrasound detection using photorefractive quantum wells,” Appl. Phys. Lett. 73, 1041 (1998).
[Crossref]

Pyrak-Nolte, L.

I. Lahiri, L. Pyrak-Nolte, D.D. Nolte, M. Melloch, R. Kruger, G. Bacher, and M. Klein, “Laser-based ultrasound detection using photorefractive quantum wells,” Appl. Phys. Lett. 73, 1041 (1998).
[Crossref]

Ramaz, F.

Roosen, G.

F. Ramaz, B. C. Forget, M. Atlan, A. C. Boccara, M. Gross, P. Delaye, and G. Roosen, “Photorefractive detection of tagged photons in ultrasound modulated optical tomography of thick biological tissues,” Opt. Express 12(22), 5469–5474 (2004).
[Crossref] [PubMed]

P. Delaye, S. de Rossi, and G. Roosen, “Photorefractive vibrometer for the detection of high amplitude vibrations on rough surfaces,” J. Opt. A: Pure and Applied Optics 2, 209–215 (2000).
[Crossref]

P. Delaye and G. Roosen., “Evaluation of a photorefractive two beam coupling novelty filter,” Opt. Commun. 165, 133–151 (1999).
[Crossref]

P. Delaye, A. Blouin, D. Drolet, L. A. de Montmorillon, G. Roosen, and J. Monchalin, “Detection of ultrasonic motion of a scattering surface by photorefractive InP :Fe under an applied dc field,” J. Opt. Soc. Am. B 14(7), 1723 (1997).
[Crossref]

L. A. de Montmorillon, P. Delaye, J. Launay, and G. Roosen, “Novel theoretical aspects on photorefractive ultrasonic detection and implementation of a sensor with an optimum sensitivity,” J. Appl. Phys. 82, 5913–5922 (1997).
[Crossref]

P. Delaye, L. A. de Montmorillon, and G. Roosen, “Transmission of time modulated optical signals throug an absorbing photorefractive crystal,” Opt. Commun. 118, 154 (1995).
[Crossref]

Roy, R. A.

Saint-Jalmes, H.

Sfez, B.

Sfez, B. G.

Slaney, M.

A. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (IEEE Press, New York., 1988).

Solymar, L.

D. Webb and L. Solymar, “Amplification of temporally modulated signal beams by two-wave mixing in Bi12SiO20,” J. Opt. Soc. Am. B 7, 2369 (1990).
[Crossref]

L. Solymar, D. Webb, and A. Grunnet-Jepsen, The physics and applications of photorefractive materials (Clarendon Press, Oxford, 1996).

Sui, L.

Wang, L.

Webb, D.

D. Webb and L. Solymar, “Amplification of temporally modulated signal beams by two-wave mixing in Bi12SiO20,” J. Opt. Soc. Am. B 7, 2369 (1990).
[Crossref]

L. Solymar, D. Webb, and A. Grunnet-Jepsen, The physics and applications of photorefractive materials (Clarendon Press, Oxford, 1996).

Yariv, A.

A. Yariv, Quantum electronics (John Wiley and Sons, New York, 1989).

Zaslavsky, D.

M. Kempe, M. Larionov, D. Zaslavsky, and A. Z. Genack, “Acousto-optic tomography with multiple scattered light,” J. Opt. Soc. Am. B 14, 1151–1158 (1997).
[Crossref]

Zhao, X.

Appl. Opt. (2)

Appl. Phys. Lett. (1)

I. Lahiri, L. Pyrak-Nolte, D.D. Nolte, M. Melloch, R. Kruger, G. Bacher, and M. Klein, “Laser-based ultrasound detection using photorefractive quantum wells,” Appl. Phys. Lett. 73, 1041 (1998).
[Crossref]

IEEE J. Quantum Electron. (1)

A. Hermanns, C. Benkert, D.M. Lininger, and D.Z. Anderson, “The transfer function and impulse response of pho-tortefractive two beam coupling,” IEEE J. Quantum Electron. 28, 750 (1992).
[Crossref]

J. Appl. Phys. (2)

L. A. de Montmorillon, P. Delaye, J. Launay, and G. Roosen, “Novel theoretical aspects on photorefractive ultrasonic detection and implementation of a sensor with an optimum sensitivity,” J. Appl. Phys. 82, 5913–5922 (1997).
[Crossref]

G. Hamel de Montchenault and J.P. Huignard, “Two-wave mixing with time-modulated signal in Bi12SiO20 theory and application to homodyne wave-front detection,” J. Appl. Phys. 63, 624 (1988).
[Crossref]

J. Lightwave Technol. (1)

F.M. Davidson and C. Field, “Coherent homodyne optical communication receivers with photorefractive optical combiners,” J. Lightwave Technol. 12, 1207 (1994).
[Crossref]

J. Mod. Opt. (1)

S. Bian and J. Frehlich, “Phase modulated two wave mixing in crystals with long photocarriers lifetimes,” J. Mod. Opt. 43(1185) (1996).
[Crossref]

J. Opt. A: Pure and Applied Optics (1)

P. Delaye, S. de Rossi, and G. Roosen, “Photorefractive vibrometer for the detection of high amplitude vibrations on rough surfaces,” J. Opt. A: Pure and Applied Optics 2, 209–215 (2000).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (3)

Opt. Commun. (2)

P. Delaye, L. A. de Montmorillon, and G. Roosen, “Transmission of time modulated optical signals throug an absorbing photorefractive crystal,” Opt. Commun. 118, 154 (1995).
[Crossref]

P. Delaye and G. Roosen., “Evaluation of a photorefractive two beam coupling novelty filter,” Opt. Commun. 165, 133–151 (1999).
[Crossref]

Opt. Express (1)

Opt. Lett. (8)

Opt. Letters (1)

E. Bossy, L. Sui, T. W. Murray, and R. A. Roy, “Fusion of conventional ultrasound imaging and acousto-optic sensing by use of a standard pulsed-ultrasound scanner,” Opt. Letters 30(7), 744 (2005).
[Crossref]

Phys. Rev. Lett. (1)

L. Wang, “Mechanisms of ultrasonic modulation of multiply scattered coherent light: a analytic model,” Phys. Rev. Lett. 87, 1 (2001).
[Crossref]

Physica B (1)

W. Leutz and G. Maret, “Ultrasonic modulation of multiply scattered light,” Physica B 204, 14 (1995).
[Crossref]

to appear in Opt. Lett. (1)

M. Gross, P. Goy, B. C. Forget, M. Atlan, F. Ramaz, A. C. Boccara, and A. K. Dunn, “Heterodyne detection of multiply scattered monochromatic light with a multipixel detector,” to appear in Opt. Lett. (2005).
[Crossref]

Other (3)

A. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (IEEE Press, New York., 1988).

L. Solymar, D. Webb, and A. Grunnet-Jepsen, The physics and applications of photorefractive materials (Clarendon Press, Oxford, 1996).

A. Yariv, Quantum electronics (John Wiley and Sons, New York, 1989).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Diffusion of light by scatterers (star).

Fig. 2.
Fig. 2.

Photorefractive interferometer.

Fig. 3.
Fig. 3.

Experimental setup. L: 1064nm single axial mode YAG: Nd3 + laser. HW:half-wave optical plates. BS : polarisation cube beam-splitter. A: US power amplifier. T: 2MHz US piezo-transducer. AOM1,2: Acousto-optic modulators. E T ,E D : fields associated to the speckle wavefronts (see text). E R plane wave reference field. D: InGaAs photodetector (ϕ = 5mm) + transimpedance amplifier. L1,2 : wide aperture aspherical lenses. W: water tank+scatterring media. PR: GaAs photorefractive crystal. Measurements are performed either with a lock-in detection or an ADC analog to digital converter (16bits, 48kHz) and recorded by a PC computer.

Fig. 4.
Fig. 4.

Fast Fourier transform of a typical acousto-optical signal issued from a 10cm thick scattering (intralipid+water) solution recorded with a (16bits, 48kHz) analog to digital converter in the case of a phase (cyclic ratio 25%) or amplitude (cyclic ratio 50%) modulation of the US at 1500Hz. The power SNR is given at the first harmonics of the modulation frequency.

Fig. 5.
Fig. 5.

Dotted : Quadratic pressure normalized response as a function of the cyclic ratio x of the acousto optical signal for phase modulation (PM), amplitude modulation (AM 0) and amplitude modulation + shift of the US frequency (AM 1). Line : associated fit.

Fig. 6.
Fig. 6.

Comparison of the normalised experimental (square) and theoretical AO response for an amplitude (A) and a phase (B) modulation of the US in the low acoustic pressure regime (proportional to the peak to peak excitation V cc of the US emitter) pressure. The cyclic ratio is x = 1/2 in case (A) and x = 1/8 in case (B), with a frequency modulation of 305Hz. The 1.74 ratio is compatible with the calculated magnitudes associated these modulations.

Equations (48)

Equations on this page are rendered with MathJax. Learn more.

E S r t = Re ( S r t e j ω 0 t
S r t = i S , i r t
S , i ( r ) = a i ( r ) e j θ i ( r ) with θ i ( r ) = k S i 0 ( r ) mod ( 2 π )
S i 0 ( r ) = S i 0 ( r i , ) + r r i ,
U PZT ( t ) = Re ( 𝒰 PZT ( t ) e j ω US t )
S i r t = S i 0 ( r ) + Re ( δ S i ( t ) e j ω US t )
β i ( t ) = k δ S i ( t ) ϕ i ( t ) = arg ( δ S i ( t ) )
δ S i ( t ) = j δ S i , j ( t )
S i r t = S i 0 ( r ) + δ S i ( t ) + sin ( ω US t + ϕ i ( t ) + π 2 )
S , i r t = a i ( r ) e j θ i ( r ) e j β i ( t ) sin ( ω US t + ϕ i ( t ) + π 2 )
S , i r t = n S , i , ω n ( r ) e jn ω US t
S , i , ω n ( r ) = a i ( r ) e j θ i ( r ) J n ( β i ( t ) ) e jn ( ϕ i ( t ) + π 2 )
E S r t = Re ( n S , ω n ( r ) e j ω n t ) with S , ω n ( r ) = i S , i , ω n ( r )
S , ω 0 ( r ) = i a i ( r ) e j θ i ( r ) J 0 ( β i ( t ) )
S , ω 1 ( r ) = i a i ( r ) e j θ i ( r ) J 1 ( β i ( t ) ) e j ( ϕ i ( t ) + π 2 )
E R r t = Re ( ε R ( r ) e jωt ) E S r t = Re ( ε S ( r , t ) e jωt )
ε S r t = n S , ω n ( r ) e j ( ω n ω ) t
ε S ( x , y , z , t ) = e α ( z z 1 ) 2 [ ε S ( x , y , z 1 , t ) + 0 t dt ε S ( x , y , z 1 , t ) G ( z , t t ) ]
G z t = ( γ ( z z 1 ) τ PR ) e t τ PR
ε S r t = e α ( z z 1 ) 2 [ ε S ( x , y , z 1 , t ) + 0 dt ε S ( x , y , z 1 , t t ) G ( z , t ) ]
ε S r t = ε T r t + ε D r t
ε T r t = e α ( z z 1 ) 2 ε S ( x , y , z 1 , t )
ε D r t = e α ( z z 1 ) 2 0 dt ε S ( x , y , z 1 , t t ) G z t
ε D r t = e α ( z z 1 ) 2 n 0 dt S , ω n ( x , y , z 1 , t t ) G z t e j ( ω n ω ) ( t t )
E D r t = Re ( e α ( z z 1 ) 2 n e j ω n t 0 dt S , ω n ( x , y , z 1 , t t ) G z t e j ( ω n ω ) t )
S PD ( t ) = dx dy ε T ( x , y , z 2 , t ) 2 + ε D ( x , y , z 2 , t ) 2 + [ ε T ( x , y , z 2 , t ) ε D * ( x , y , z 2 , t ) + c . c ]
S PD ( t ) = c . c + e α ( z 2 z 1 ) dx dy ε S ( x , y , z 1 , t ) 0 dt ε S * ( x , y , z 1 , t t ) G * z t
S PD ( t ) = c . c + e α ( z 2 z 1 ) dxdy n , n i , i S , i , ω n ( x , y , z 1 , t ) e j ( ω n ω ) t
0 dt G * z t′ S , i , ω n * ( x , y , z 1 , t t ) e j ( ω n ω ) ( t t )
dxdy S , i , ω n r t S , i , ω n * ( r , t t ) = J n ( β i ( t ) ) J n ( β i ( t t ) )
× e jn ( ϕ i ( t ) + π / 2 ) e jn ( ϕ i′ ( t t ) + π / 2 ) dxdy a i ( r ) a i ( r ) e j ( θ i ( r ) θ i ( r ) )
i S , i , ω n ( r , t ) * S , i , ω n ( r , t t ) = i a i 2 ( r ) J n ( β i ( t ) ) J n ( β i ( t t ) ) e j ( n ϕ i ( t ) n ϕ i ( t t ) )
S P D ( t ) = c . c + e α ( z 2 z 1 ) dxdy n , i a i 2 ( x , y , z 1 ) J n ( β i ( t ) ) e j n ϕ i ( t )
0 d t J n ( β i ( t t ) ) e j n ϕ i ( t t ) G * ( z 2 , t ) e j ( ω n ω ) t
𝒰 P ZT ( t ) 𝒰 P Z T H X X ( t ) e j ψ X X ( t )
H A M ( t ) = 1 ; ψ A M ( t ) = 0 for 0 < t < x T
H A M ( t ) = 0 ; ψ A M ( t ) = 0 for x T < t < T
H P M ( t ) = 1 ; ψ PM ( t ) = 0 for 0 < t < x T
H P M ( t ) = 1 ; ψ PM ( t ) = π for x T < t < T
β i ( t ) H X X ( t ) β i ϕ i ( t ) ϕ i + ψ X X ( t )
S P D ( t ) = c . c . + ( 1 2 x ) A e j ψ PM ( t )
A = η P R e α ( z 2 z 1 ) × [ i J 1 2 ( β i ) d x d y a i 2 ( x , y , z 1 ) ]
S P D ( t ) = [ 8 x ( 1 2 x ) A sin c ( π x ) ] cos ( ω mod t π x ) + harmonics
S P D ( t ) = [ c . c . + H A M ( t ) A ]
A = η P R e α ( z 2 z 1 ) × [ i ( 1 J 0 ( β i ) ) d x d y a i 2 ( x , y , z 1 ) ]
S P D ( t ) = [ 4 A x sin c ( π x ) ] cos ( ω mod t π x ) + harmonics
S P D ( t ) = c . c . + x H A M ( t ) A
S P D ( t ) = [ 4 A x 2 sin c ( π x ) ] cos ( ω mod t π x ) + harmonics

Metrics