Abstract

Channel waveguides were formed on fused silica substrate by Ge-ion implantation with lithographically defined channels. Thermal poling was performed to form second order optical nonlinearity (SON) in the waveguides. Periodical photo masks were designed and fabricated on a mask glass. Periodical erasure of the SON in the channel waveguides by 266 nm UV light with the photo mask on the fused silica substrate produced periodical SON distribution in the waveguides. First order quasi-phase-matching second-harmonic generation from 1064 nm to 532 nm was demonstrated in the channel waveguides.

© 2005 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Quasi-phase matched second-harmonic generation through thermal poling in femtosecond laser-written glass waveguides

Guangyu Li, Kim A. Winick, Ali A. Said, Mark Dugan, and Philippe Bado
Opt. Express 17(11) 9442-9453 (2009)

Waveguiding properties in Yb:YAG crystals implanted with protons and carbon ions

G. V. Vázquez, D. Ramírez, H. Márquez, E. Flores-Romero, J. Rickards, and R. Trejo-Luna
Appl. Opt. 51(22) 5573-5578 (2012)

Nonlinear contrawave mixing devices in poled-polymer waveguides

Akira Otomo, George I. Stegeman, Marinus C. Flipse, Mart B. J. Diemeer, Winfried H. G. Horsthuis, and Guus R. Möhlmann
J. Opt. Soc. Am. B 15(2) 759-772 (1998)

References

  • View by:
  • |
  • |
  • |

  1. R.A. Myers, N. Mukherjee, and S.R.J. Brueck, “Large second-order nonlinearity in poled fused silica,” Opt. Lett. 16, 1732’1734 (1991).
    [Crossref] [PubMed]
  2. R. H. Stolen and H. W. K. Tom, “Self-organized phase-matched harmonic generation in optical fibers,”Opt. Lett. 12, 585’587 (1987).
    [Crossref] [PubMed]
  3. V. Pruneri, F. Samoggia, G. Bonfrate, P. G. Kazansky, and G. M. Yang, “Thermal poling of silica in air and under vacuum: The influence of charge transport on second harmonic generation,” Appl. Phys. Lett. 74, 2423’2425 (1999).
    [Crossref]
  4. W. Margulis and F. Laurell, “Interferometric study of poled glass under etching,”Opt. Lett. 21, 1786’1788 (1996).
    [Crossref] [PubMed]
  5. A.L.C. Triques, I.C.S. Carvalho, M.F. Moreira, H.R. Carvalho, R. Fischer, B. Lesche, and W. Margulis, “Time evolution of depletion region in poled silica,” Appl. Phys. Lett. 82, 2948’2950 (2003).
    [Crossref]
  6. F. C. Garcia, L Vogelaar, and R. Kashyap, “Poling of a channel waveguide,” Opt. Express 11, 3041’3047 (2003).
    [Crossref] [PubMed]
  7. A. C. Liu, M. J. F. Digonnet, and G. S. Kino, “Electro-optic phase modulation in silica channel waveguide,” OptLett. 19, 466’468 (1994).
  8. H.Y. Chen, C.L. Lin, Y.H. Yang, S. Chao, H. Niu, and C. TShih, “Creation of second-order nonlinearity and quasi-phase-matched second harmonic generation in Ge-implanted fused silica planar waveguide,” Appl. Phys. Lett. 86, 081107 (2005).
    [Crossref]
  9. J. F. Ziegler, J. P. Biersack, and U. Littmark, The Stopping and Range of Ions in Solids, (Pergamon, New York, 1985).
  10. H. Y. Chen, J. S. Sue, Y.H. Lin, C. S. Tsai, P. T. Wu, and S. Chao “Thermal poling and ultraviolet erasure characteristics of type-III ultraviolet-grade fused silica and application to periodic poling on planar substrates” J. Appl. Phys. 94, 1531’1538 (2003).
    [Crossref]
  11. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631’2654 (1992).
    [Crossref]

2005 (1)

H.Y. Chen, C.L. Lin, Y.H. Yang, S. Chao, H. Niu, and C. TShih, “Creation of second-order nonlinearity and quasi-phase-matched second harmonic generation in Ge-implanted fused silica planar waveguide,” Appl. Phys. Lett. 86, 081107 (2005).
[Crossref]

2003 (3)

H. Y. Chen, J. S. Sue, Y.H. Lin, C. S. Tsai, P. T. Wu, and S. Chao “Thermal poling and ultraviolet erasure characteristics of type-III ultraviolet-grade fused silica and application to periodic poling on planar substrates” J. Appl. Phys. 94, 1531’1538 (2003).
[Crossref]

A.L.C. Triques, I.C.S. Carvalho, M.F. Moreira, H.R. Carvalho, R. Fischer, B. Lesche, and W. Margulis, “Time evolution of depletion region in poled silica,” Appl. Phys. Lett. 82, 2948’2950 (2003).
[Crossref]

F. C. Garcia, L Vogelaar, and R. Kashyap, “Poling of a channel waveguide,” Opt. Express 11, 3041’3047 (2003).
[Crossref] [PubMed]

1999 (1)

V. Pruneri, F. Samoggia, G. Bonfrate, P. G. Kazansky, and G. M. Yang, “Thermal poling of silica in air and under vacuum: The influence of charge transport on second harmonic generation,” Appl. Phys. Lett. 74, 2423’2425 (1999).
[Crossref]

1996 (1)

1994 (1)

A. C. Liu, M. J. F. Digonnet, and G. S. Kino, “Electro-optic phase modulation in silica channel waveguide,” OptLett. 19, 466’468 (1994).

1992 (1)

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631’2654 (1992).
[Crossref]

1991 (1)

1987 (1)

Biersack, J. P.

J. F. Ziegler, J. P. Biersack, and U. Littmark, The Stopping and Range of Ions in Solids, (Pergamon, New York, 1985).

Bonfrate, G.

V. Pruneri, F. Samoggia, G. Bonfrate, P. G. Kazansky, and G. M. Yang, “Thermal poling of silica in air and under vacuum: The influence of charge transport on second harmonic generation,” Appl. Phys. Lett. 74, 2423’2425 (1999).
[Crossref]

Brueck, S.R.J.

Byer, R. L.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631’2654 (1992).
[Crossref]

Carvalho, H.R.

A.L.C. Triques, I.C.S. Carvalho, M.F. Moreira, H.R. Carvalho, R. Fischer, B. Lesche, and W. Margulis, “Time evolution of depletion region in poled silica,” Appl. Phys. Lett. 82, 2948’2950 (2003).
[Crossref]

Carvalho, I.C.S.

A.L.C. Triques, I.C.S. Carvalho, M.F. Moreira, H.R. Carvalho, R. Fischer, B. Lesche, and W. Margulis, “Time evolution of depletion region in poled silica,” Appl. Phys. Lett. 82, 2948’2950 (2003).
[Crossref]

Chao, S.

H.Y. Chen, C.L. Lin, Y.H. Yang, S. Chao, H. Niu, and C. TShih, “Creation of second-order nonlinearity and quasi-phase-matched second harmonic generation in Ge-implanted fused silica planar waveguide,” Appl. Phys. Lett. 86, 081107 (2005).
[Crossref]

H. Y. Chen, J. S. Sue, Y.H. Lin, C. S. Tsai, P. T. Wu, and S. Chao “Thermal poling and ultraviolet erasure characteristics of type-III ultraviolet-grade fused silica and application to periodic poling on planar substrates” J. Appl. Phys. 94, 1531’1538 (2003).
[Crossref]

Chen, H. Y.

H. Y. Chen, J. S. Sue, Y.H. Lin, C. S. Tsai, P. T. Wu, and S. Chao “Thermal poling and ultraviolet erasure characteristics of type-III ultraviolet-grade fused silica and application to periodic poling on planar substrates” J. Appl. Phys. 94, 1531’1538 (2003).
[Crossref]

Chen, H.Y.

H.Y. Chen, C.L. Lin, Y.H. Yang, S. Chao, H. Niu, and C. TShih, “Creation of second-order nonlinearity and quasi-phase-matched second harmonic generation in Ge-implanted fused silica planar waveguide,” Appl. Phys. Lett. 86, 081107 (2005).
[Crossref]

Digonnet, M. J. F.

A. C. Liu, M. J. F. Digonnet, and G. S. Kino, “Electro-optic phase modulation in silica channel waveguide,” OptLett. 19, 466’468 (1994).

Fejer, M. M.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631’2654 (1992).
[Crossref]

Fischer, R.

A.L.C. Triques, I.C.S. Carvalho, M.F. Moreira, H.R. Carvalho, R. Fischer, B. Lesche, and W. Margulis, “Time evolution of depletion region in poled silica,” Appl. Phys. Lett. 82, 2948’2950 (2003).
[Crossref]

Garcia, F. C.

Jundt, D. H.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631’2654 (1992).
[Crossref]

Kashyap, R.

Kazansky, P. G.

V. Pruneri, F. Samoggia, G. Bonfrate, P. G. Kazansky, and G. M. Yang, “Thermal poling of silica in air and under vacuum: The influence of charge transport on second harmonic generation,” Appl. Phys. Lett. 74, 2423’2425 (1999).
[Crossref]

Kino, G. S.

A. C. Liu, M. J. F. Digonnet, and G. S. Kino, “Electro-optic phase modulation in silica channel waveguide,” OptLett. 19, 466’468 (1994).

Laurell, F.

Lesche, B.

A.L.C. Triques, I.C.S. Carvalho, M.F. Moreira, H.R. Carvalho, R. Fischer, B. Lesche, and W. Margulis, “Time evolution of depletion region in poled silica,” Appl. Phys. Lett. 82, 2948’2950 (2003).
[Crossref]

Lin, C.L.

H.Y. Chen, C.L. Lin, Y.H. Yang, S. Chao, H. Niu, and C. TShih, “Creation of second-order nonlinearity and quasi-phase-matched second harmonic generation in Ge-implanted fused silica planar waveguide,” Appl. Phys. Lett. 86, 081107 (2005).
[Crossref]

Lin, Y.H.

H. Y. Chen, J. S. Sue, Y.H. Lin, C. S. Tsai, P. T. Wu, and S. Chao “Thermal poling and ultraviolet erasure characteristics of type-III ultraviolet-grade fused silica and application to periodic poling on planar substrates” J. Appl. Phys. 94, 1531’1538 (2003).
[Crossref]

Littmark, U.

J. F. Ziegler, J. P. Biersack, and U. Littmark, The Stopping and Range of Ions in Solids, (Pergamon, New York, 1985).

Liu, A. C.

A. C. Liu, M. J. F. Digonnet, and G. S. Kino, “Electro-optic phase modulation in silica channel waveguide,” OptLett. 19, 466’468 (1994).

Magel, G. A.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631’2654 (1992).
[Crossref]

Margulis, W.

A.L.C. Triques, I.C.S. Carvalho, M.F. Moreira, H.R. Carvalho, R. Fischer, B. Lesche, and W. Margulis, “Time evolution of depletion region in poled silica,” Appl. Phys. Lett. 82, 2948’2950 (2003).
[Crossref]

W. Margulis and F. Laurell, “Interferometric study of poled glass under etching,”Opt. Lett. 21, 1786’1788 (1996).
[Crossref] [PubMed]

Moreira, M.F.

A.L.C. Triques, I.C.S. Carvalho, M.F. Moreira, H.R. Carvalho, R. Fischer, B. Lesche, and W. Margulis, “Time evolution of depletion region in poled silica,” Appl. Phys. Lett. 82, 2948’2950 (2003).
[Crossref]

Mukherjee, N.

Myers, R.A.

Niu, H.

H.Y. Chen, C.L. Lin, Y.H. Yang, S. Chao, H. Niu, and C. TShih, “Creation of second-order nonlinearity and quasi-phase-matched second harmonic generation in Ge-implanted fused silica planar waveguide,” Appl. Phys. Lett. 86, 081107 (2005).
[Crossref]

Pruneri, V.

V. Pruneri, F. Samoggia, G. Bonfrate, P. G. Kazansky, and G. M. Yang, “Thermal poling of silica in air and under vacuum: The influence of charge transport on second harmonic generation,” Appl. Phys. Lett. 74, 2423’2425 (1999).
[Crossref]

Samoggia, F.

V. Pruneri, F. Samoggia, G. Bonfrate, P. G. Kazansky, and G. M. Yang, “Thermal poling of silica in air and under vacuum: The influence of charge transport on second harmonic generation,” Appl. Phys. Lett. 74, 2423’2425 (1999).
[Crossref]

Stolen, R. H.

Sue, J. S.

H. Y. Chen, J. S. Sue, Y.H. Lin, C. S. Tsai, P. T. Wu, and S. Chao “Thermal poling and ultraviolet erasure characteristics of type-III ultraviolet-grade fused silica and application to periodic poling on planar substrates” J. Appl. Phys. 94, 1531’1538 (2003).
[Crossref]

Tom, H. W. K.

Triques, A.L.C.

A.L.C. Triques, I.C.S. Carvalho, M.F. Moreira, H.R. Carvalho, R. Fischer, B. Lesche, and W. Margulis, “Time evolution of depletion region in poled silica,” Appl. Phys. Lett. 82, 2948’2950 (2003).
[Crossref]

Tsai, C. S.

H. Y. Chen, J. S. Sue, Y.H. Lin, C. S. Tsai, P. T. Wu, and S. Chao “Thermal poling and ultraviolet erasure characteristics of type-III ultraviolet-grade fused silica and application to periodic poling on planar substrates” J. Appl. Phys. 94, 1531’1538 (2003).
[Crossref]

TShih, C.

H.Y. Chen, C.L. Lin, Y.H. Yang, S. Chao, H. Niu, and C. TShih, “Creation of second-order nonlinearity and quasi-phase-matched second harmonic generation in Ge-implanted fused silica planar waveguide,” Appl. Phys. Lett. 86, 081107 (2005).
[Crossref]

Vogelaar, L

Wu, P. T.

H. Y. Chen, J. S. Sue, Y.H. Lin, C. S. Tsai, P. T. Wu, and S. Chao “Thermal poling and ultraviolet erasure characteristics of type-III ultraviolet-grade fused silica and application to periodic poling on planar substrates” J. Appl. Phys. 94, 1531’1538 (2003).
[Crossref]

Yang, G. M.

V. Pruneri, F. Samoggia, G. Bonfrate, P. G. Kazansky, and G. M. Yang, “Thermal poling of silica in air and under vacuum: The influence of charge transport on second harmonic generation,” Appl. Phys. Lett. 74, 2423’2425 (1999).
[Crossref]

Yang, Y.H.

H.Y. Chen, C.L. Lin, Y.H. Yang, S. Chao, H. Niu, and C. TShih, “Creation of second-order nonlinearity and quasi-phase-matched second harmonic generation in Ge-implanted fused silica planar waveguide,” Appl. Phys. Lett. 86, 081107 (2005).
[Crossref]

Ziegler, J. F.

J. F. Ziegler, J. P. Biersack, and U. Littmark, The Stopping and Range of Ions in Solids, (Pergamon, New York, 1985).

Appl. Phys. Lett. (3)

V. Pruneri, F. Samoggia, G. Bonfrate, P. G. Kazansky, and G. M. Yang, “Thermal poling of silica in air and under vacuum: The influence of charge transport on second harmonic generation,” Appl. Phys. Lett. 74, 2423’2425 (1999).
[Crossref]

A.L.C. Triques, I.C.S. Carvalho, M.F. Moreira, H.R. Carvalho, R. Fischer, B. Lesche, and W. Margulis, “Time evolution of depletion region in poled silica,” Appl. Phys. Lett. 82, 2948’2950 (2003).
[Crossref]

H.Y. Chen, C.L. Lin, Y.H. Yang, S. Chao, H. Niu, and C. TShih, “Creation of second-order nonlinearity and quasi-phase-matched second harmonic generation in Ge-implanted fused silica planar waveguide,” Appl. Phys. Lett. 86, 081107 (2005).
[Crossref]

IEEE J. Quantum Electron. (1)

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631’2654 (1992).
[Crossref]

J. Appl. Phys. (1)

H. Y. Chen, J. S. Sue, Y.H. Lin, C. S. Tsai, P. T. Wu, and S. Chao “Thermal poling and ultraviolet erasure characteristics of type-III ultraviolet-grade fused silica and application to periodic poling on planar substrates” J. Appl. Phys. 94, 1531’1538 (2003).
[Crossref]

Opt. Express (1)

Opt. Lett. (3)

OptLett. (1)

A. C. Liu, M. J. F. Digonnet, and G. S. Kino, “Electro-optic phase modulation in silica channel waveguide,” OptLett. 19, 466’468 (1994).

Other (1)

J. F. Ziegler, J. P. Biersack, and U. Littmark, The Stopping and Range of Ions in Solids, (Pergamon, New York, 1985).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Fabrication flow of multiple channel waveguides.

Fig. 2.
Fig. 2.

(a) Top-view of the sample under optical microscope after dry etching. (b) Schematic cross-section view of the ion-implanted sample. Dash line is the peak location of the Gaussianlike germanium profile. (c) Simulated chevron-like shape mode pattern.

Fig. 3.
Fig. 3.

Difference between the peak refractive index of the waveguide and the substrate as a function of wavelength.

Fig. 4.
Fig. 4.

Dependence of SH signal on inverse period, 1/Λ , for (a) s to s and (b) p to s conversions in each waveguide. Insets: SH mode pattern observed for the highest SH output power channel waveguide.

Fig. 5.
Fig. 5.

The relation between second harmonic and fundamental powers for s to s (open circles) and p to s (open triangles) conversions. Solid lines are theoretically fitted parabolic curves.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Λ = λ ω 2 ( N 2 ω N ω )
P 2 ω = 8 π 2 d Q , eff 2 L 2 N ω 2 N 2 ω c ε 0 λ ω 2 P ω 2 A OVL sin c 2 ( Δ βL 2 )

Metrics