Abstract

A new method for simultaneously measuring the phase retardation and optic axis of a uniaxial compensation film is demonstrated using an axially-symmetric sheared polymer network liquid crystal (SPNLC). By overlaying a tested compensation film with a calibrated SPNLC cell between crossed polarizers, two dark spots are clearly observed in a CCD image. From the orientation direction and distance of these two spots, the optic axis and phase retardation value of the compensation film can be determined. This method is particularly useful for those optical systems whose optic axis and phase retardation are dynamically changing.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Hecht, Optics, (Addison Wesley, New York, 2002).
  2. T. Oakberg, “Measurement of low-level strain birefringence in optical elements using a photoelastic modulator,” in International Symposium on Polarization Analysis and Applications to Device Technology,T. Yoshizawa and H. Yokota, eds., Proc. SPIE 2873, 17–20 (1996).
    [Crossref]
  3. T. Oakberg, “Measurement of waveplate retardation using a photoelastic modulator,” in Polarization: Measurement, Analysis, Remote Sensing ,D.H. Goldstein and R.A. Chipman, eds., Proc. SPIE 3121, 19–22, (1997).
    [Crossref]
  4. S. Nakadate, “High precision retardation measurement using phase detection of Young’s fringes,” Appl. Opt. 29, 242–246 (1990). http://ao.osa.org/abstract.cfm?id=37642
    [Crossref] [PubMed]
  5. Y. L. Lo and P. F. Hsu, “Birefringence measurements by an electro-optic modulator using a new heterodyne scheme,” Opt. Eng. 41, 2764–2767 (2002).
    [Crossref]
  6. Y. H. Wu, Y. H. Lin, H. Ren, X. Nie, J. H. Lee, and S. T. Wu, “Axially-symmetric sheared polymer network liquid crystals,” Opt. Express 13, 4638–4644 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-12-4638
    [Crossref] [PubMed]
  7. Y. H. Wu, Y. H. Lin, Y. Q. Lu, H. Ren, Y. H. Fan, J. R. Wu, and S. T. Wu ”Submillisecond response variable optical attenuator based on sheared polymer network liquid crystal,” Opt. Express,  12, 6377–6384 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-25-6382
    [Crossref]
  8. J. L. West, G. Zhang, and A. Glushchenko, “Fast birefringent mode stressed liquid crystal,” Appl. Phys. Lett. 86, 031111 (2005).
    [Crossref]
  9. S. T. Wu, “Birefringence dispersion of liquid crystals,” Phys. Rev. A 33, 1270–1274 (1986).
    [Crossref] [PubMed]

2005 (2)

2004 (1)

Y. H. Wu, Y. H. Lin, Y. Q. Lu, H. Ren, Y. H. Fan, J. R. Wu, and S. T. Wu ”Submillisecond response variable optical attenuator based on sheared polymer network liquid crystal,” Opt. Express,  12, 6377–6384 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-25-6382
[Crossref]

2002 (1)

Y. L. Lo and P. F. Hsu, “Birefringence measurements by an electro-optic modulator using a new heterodyne scheme,” Opt. Eng. 41, 2764–2767 (2002).
[Crossref]

1997 (1)

T. Oakberg, “Measurement of waveplate retardation using a photoelastic modulator,” in Polarization: Measurement, Analysis, Remote Sensing ,D.H. Goldstein and R.A. Chipman, eds., Proc. SPIE 3121, 19–22, (1997).
[Crossref]

1996 (1)

T. Oakberg, “Measurement of low-level strain birefringence in optical elements using a photoelastic modulator,” in International Symposium on Polarization Analysis and Applications to Device Technology,T. Yoshizawa and H. Yokota, eds., Proc. SPIE 2873, 17–20 (1996).
[Crossref]

1990 (1)

1986 (1)

S. T. Wu, “Birefringence dispersion of liquid crystals,” Phys. Rev. A 33, 1270–1274 (1986).
[Crossref] [PubMed]

Fan, Y. H.

Y. H. Wu, Y. H. Lin, Y. Q. Lu, H. Ren, Y. H. Fan, J. R. Wu, and S. T. Wu ”Submillisecond response variable optical attenuator based on sheared polymer network liquid crystal,” Opt. Express,  12, 6377–6384 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-25-6382
[Crossref]

Glushchenko, A.

J. L. West, G. Zhang, and A. Glushchenko, “Fast birefringent mode stressed liquid crystal,” Appl. Phys. Lett. 86, 031111 (2005).
[Crossref]

Hecht, E.

E. Hecht, Optics, (Addison Wesley, New York, 2002).

Hsu, P. F.

Y. L. Lo and P. F. Hsu, “Birefringence measurements by an electro-optic modulator using a new heterodyne scheme,” Opt. Eng. 41, 2764–2767 (2002).
[Crossref]

Lee, J. H.

Lin, Y. H.

Y. H. Wu, Y. H. Lin, H. Ren, X. Nie, J. H. Lee, and S. T. Wu, “Axially-symmetric sheared polymer network liquid crystals,” Opt. Express 13, 4638–4644 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-12-4638
[Crossref] [PubMed]

Y. H. Wu, Y. H. Lin, Y. Q. Lu, H. Ren, Y. H. Fan, J. R. Wu, and S. T. Wu ”Submillisecond response variable optical attenuator based on sheared polymer network liquid crystal,” Opt. Express,  12, 6377–6384 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-25-6382
[Crossref]

Lo, Y. L.

Y. L. Lo and P. F. Hsu, “Birefringence measurements by an electro-optic modulator using a new heterodyne scheme,” Opt. Eng. 41, 2764–2767 (2002).
[Crossref]

Lu, Y. Q.

Y. H. Wu, Y. H. Lin, Y. Q. Lu, H. Ren, Y. H. Fan, J. R. Wu, and S. T. Wu ”Submillisecond response variable optical attenuator based on sheared polymer network liquid crystal,” Opt. Express,  12, 6377–6384 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-25-6382
[Crossref]

Nakadate, S.

Nie, X.

Oakberg, T.

T. Oakberg, “Measurement of waveplate retardation using a photoelastic modulator,” in Polarization: Measurement, Analysis, Remote Sensing ,D.H. Goldstein and R.A. Chipman, eds., Proc. SPIE 3121, 19–22, (1997).
[Crossref]

T. Oakberg, “Measurement of low-level strain birefringence in optical elements using a photoelastic modulator,” in International Symposium on Polarization Analysis and Applications to Device Technology,T. Yoshizawa and H. Yokota, eds., Proc. SPIE 2873, 17–20 (1996).
[Crossref]

Ren, H.

Y. H. Wu, Y. H. Lin, H. Ren, X. Nie, J. H. Lee, and S. T. Wu, “Axially-symmetric sheared polymer network liquid crystals,” Opt. Express 13, 4638–4644 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-12-4638
[Crossref] [PubMed]

Y. H. Wu, Y. H. Lin, Y. Q. Lu, H. Ren, Y. H. Fan, J. R. Wu, and S. T. Wu ”Submillisecond response variable optical attenuator based on sheared polymer network liquid crystal,” Opt. Express,  12, 6377–6384 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-25-6382
[Crossref]

West, J. L.

J. L. West, G. Zhang, and A. Glushchenko, “Fast birefringent mode stressed liquid crystal,” Appl. Phys. Lett. 86, 031111 (2005).
[Crossref]

Wu, J. R.

Y. H. Wu, Y. H. Lin, Y. Q. Lu, H. Ren, Y. H. Fan, J. R. Wu, and S. T. Wu ”Submillisecond response variable optical attenuator based on sheared polymer network liquid crystal,” Opt. Express,  12, 6377–6384 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-25-6382
[Crossref]

Wu, S. T.

Y. H. Wu, Y. H. Lin, H. Ren, X. Nie, J. H. Lee, and S. T. Wu, “Axially-symmetric sheared polymer network liquid crystals,” Opt. Express 13, 4638–4644 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-12-4638
[Crossref] [PubMed]

Y. H. Wu, Y. H. Lin, Y. Q. Lu, H. Ren, Y. H. Fan, J. R. Wu, and S. T. Wu ”Submillisecond response variable optical attenuator based on sheared polymer network liquid crystal,” Opt. Express,  12, 6377–6384 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-25-6382
[Crossref]

S. T. Wu, “Birefringence dispersion of liquid crystals,” Phys. Rev. A 33, 1270–1274 (1986).
[Crossref] [PubMed]

Wu, Y. H.

Y. H. Wu, Y. H. Lin, H. Ren, X. Nie, J. H. Lee, and S. T. Wu, “Axially-symmetric sheared polymer network liquid crystals,” Opt. Express 13, 4638–4644 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-12-4638
[Crossref] [PubMed]

Y. H. Wu, Y. H. Lin, Y. Q. Lu, H. Ren, Y. H. Fan, J. R. Wu, and S. T. Wu ”Submillisecond response variable optical attenuator based on sheared polymer network liquid crystal,” Opt. Express,  12, 6377–6384 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-25-6382
[Crossref]

Zhang, G.

J. L. West, G. Zhang, and A. Glushchenko, “Fast birefringent mode stressed liquid crystal,” Appl. Phys. Lett. 86, 031111 (2005).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

J. L. West, G. Zhang, and A. Glushchenko, “Fast birefringent mode stressed liquid crystal,” Appl. Phys. Lett. 86, 031111 (2005).
[Crossref]

Opt. Eng. (1)

Y. L. Lo and P. F. Hsu, “Birefringence measurements by an electro-optic modulator using a new heterodyne scheme,” Opt. Eng. 41, 2764–2767 (2002).
[Crossref]

Opt. Express (2)

Y. H. Wu, Y. H. Lin, H. Ren, X. Nie, J. H. Lee, and S. T. Wu, “Axially-symmetric sheared polymer network liquid crystals,” Opt. Express 13, 4638–4644 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-12-4638
[Crossref] [PubMed]

Y. H. Wu, Y. H. Lin, Y. Q. Lu, H. Ren, Y. H. Fan, J. R. Wu, and S. T. Wu ”Submillisecond response variable optical attenuator based on sheared polymer network liquid crystal,” Opt. Express,  12, 6377–6384 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-25-6382
[Crossref]

Phys. Rev. A (1)

S. T. Wu, “Birefringence dispersion of liquid crystals,” Phys. Rev. A 33, 1270–1274 (1986).
[Crossref] [PubMed]

Proc. SPIE (2)

T. Oakberg, “Measurement of low-level strain birefringence in optical elements using a photoelastic modulator,” in International Symposium on Polarization Analysis and Applications to Device Technology,T. Yoshizawa and H. Yokota, eds., Proc. SPIE 2873, 17–20 (1996).
[Crossref]

T. Oakberg, “Measurement of waveplate retardation using a photoelastic modulator,” in Polarization: Measurement, Analysis, Remote Sensing ,D.H. Goldstein and R.A. Chipman, eds., Proc. SPIE 3121, 19–22, (1997).
[Crossref]

Other (1)

E. Hecht, Optics, (Addison Wesley, New York, 2002).

Supplementary Material (2)

» Media 1: MPG (378 KB)     
» Media 2: MPG (369 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

The illustration of the off-axis shearing of the SPNLC cell

Fig. 2.
Fig. 2.

(a) The LC director profile of a SPNLC layer, and (b) Detected image under crossed polarizers.

Fig. 3.
Fig. 3.

Phase retardation (dΔn) profile of the axially-symmetric SPNLC layer. Cell gap d=9 μm.

Fig. 4.
Fig. 4.

(a)Measurement setup and (b) illustration of the measurement methods.

Fig. 5.
Fig. 5.

(a) The transmitted image recorded by a CCD camera, and (b) the converted transmittance distribution.

Fig. 6.
Fig. 6.

(a) The relative distance of the two transmission minima recorded by a CCD camera. (b) The corresponding phase retardation of the quarter-wave film.

Fig. 7.
Fig. 7.

CCD images taken under three different color filters (a) 486 nm, (b) 532 nm, and (c) 632 nm.

Fig. 8.
Fig. 8.

(a) A movie shows the real dynamic image changes when the quarter-wave plate rotates at different angles (377 KB) (b) The simulation result shows the same trend when we rotate the slow axis of the quarter-wave plate from 0° to 135° (368 KB).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Γ R , slow Γ S , fast = 0
Γ R , slow + Γ S , slow =

Metrics