Abstract

Fluorescence Correlation Spectroscopy is used to investigate fluorescent molecules in solution diffusing in subwavelength rectangular apertures milled in Aluminium films. This rectangular shape allows to switch between a propagating and an evanescent excitation field within the aperture, leading to a significant tunability of the observation volume. Due to the vicinity of the metal surface, the fluorophore’s molecular lifetime inside the aperture appears to be dramatically reduced whatever the excitation field is set to. However, for a properly tailored evanescent excitation field within the nanoaperture, the detected fluorescence rate per molecule is significantly enhanced as compared to open solution. This suggests that the observed molecular fluorescence enhancement is mainly due to the excitation near field within the subwavelength aperture.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Hayasawa, Y. Inouye, and S. Kawata, “Evanescent field excitation and measurement of dye fluorescence in a metallic probe near-field scanning optical microscope,” J Microsc 194, 472–476 (1999).
    [CrossRef]
  2. J. Azoulay, A. Débarre, A. Richard, and P. Tchénio, “Field enhancement and apertureless near-field optical spec-troscopy of single molecules,” J Microsc 194, 486–490 (1999).
    [CrossRef]
  3. H.F. Hamann, A. Gallagher, and D.J. Nesbitt, “Near-field fluorescence imaging by localized field enhancement near a sharp probe tip,” Appl. Phys. Lett. 76, 1953–1957 (2000).
    [CrossRef]
  4. E.J. Sánchez, L. Novotny, and X.S. Xie, “Near-Field Fluorescence Microscopy Based on Two-Photon Excitation with Metal Tips,” Phys. Rev. Lett. 82, 4014–4017 (1999).
    [CrossRef]
  5. B. Knoll and F. Keilmann, “Near-field probing of vibrational absorption for chemical microscopy,” Nature 399, 134–136 (1999).
    [CrossRef]
  6. Y. Inouye, N. Hayasawa, K. Hayashi, Z. Sekkat, and S. Kawata, “Near-field scanning optical microscope using a metallized cantilever tip for nanospectroscopy,” Proc SPIE Int. Soc. Eng. 3791, 40–48 (1999).
  7. T. Ichimura, N. Hayasawa, M. Hashimoto, Y. Inouye, and S. Kawata, “Tip-Enhanced Coherent Anti-Stokes Raman Scattering for Vibrational Nanoimaging,” Phys. Rev. Lett. 92, 220801–220804 (2004).
    [CrossRef] [PubMed]
  8. Near-Field Optics and Surface Plasmon Polaritons, edited byS. Kawata(Springer, Berlin, 2001).
    [CrossRef]
  9. S. Nie and S.R. Emory, “Probing single molecule and single nanoparticles by surface enhanced Raman scattering,” Science 275, 11021106 (1997).
    [CrossRef] [PubMed]
  10. K. Kneipp, H. Kneipp, I. Itzkan, R.R. Dasari, and M.S. Feld, “Surface-enhanced non-linear Raman scattering at the single-molecule level,” Chem. Phys. 247, 155–162 (1999).
    [CrossRef]
  11. H. Yokota, K. Saito, and T. Yanagida, “Single Molecule Imaging of Fluorescently Labeled Proteins on Metal by Surface Plasmons in Aqueous Solution,” Phys. Rev. Lett. 80, 4606–4609 (1998).
    [CrossRef]
  12. F.D. Stefani, K. Vasilev, N. Bocchio, N. Stoyanova, and M. Kreiter, “Surface-Plasmon-Mediated Single-Molecule Fluorescence Through a Thin Metallic Film,” Phys. Rev. Lett. 94, 023005–1–4 (2005).
    [CrossRef]
  13. M.J. Levene, J. Korlach, S.W. Turner, M. Foquet, H.G. Craighead, and W.W. Webb, “Zero-mode waveguides for single-molecule analysis at high concentrations,” Science 299, 682–686 (2003).
    [CrossRef] [PubMed]
  14. K.T. Samiee, M. Foquet, L. Guo, E.C. Cox, and H.G. Craighead, “λ repressor oligomerization kinetics at high concentrations using fluorescence correlation spectroscopy in zero-mode waveguides,” Biophys. J. 88, 2145–2153 (2005).
    [CrossRef]
  15. H. Rigneault, J. Capoulade, J. Dintinger, J. Wenger, N. Bonod, E. Popov, T. W. Ebbesen, and P.-F. Lenne, “Enhancement of single-molecule fluorescence detection in subwavelength apertures,” accepted for publication in Phys. Rev. Lett. (2005).
    [CrossRef]
  16. T. W. Ebbesen, H. J. Lezec, and H. F. Ghaemi, et al., “Extraordinary optical transmission through subwavelength hole arrays,” Nature 391, 667–669 (1998).
    [CrossRef]
  17. H. J. Lezec, A. Degiron, and E. Devaux, et al., “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
    [CrossRef] [PubMed]
  18. A. Degiron, H. J. Lezec, and N. Yamamoto, et al., “Optical transmission properties of a single subwavelength aperutre in a real metal,” Opt. Commun. 239, 61–66 (2004).
    [CrossRef]
  19. E. Popov, N. Bonod, M. Neniévre, H. Rigneault, P.-F. Lenne, and P. Chaumet, “Surface plasmon excitation on a single subwavelength hole in a metallic sheet,” Appl. Opt. 44, 2332–2337 (2005).
    [CrossRef] [PubMed]
  20. A. R. Zakharian, M. Mansuripur, and J. V. Moloney, “Transmission of light through small elliptical apertures,” Opt. Express 12, 2631–2648 (2004).
    [CrossRef] [PubMed]
  21. L. Yin, V. K. Vlasko-Vlasov, and A. Rydh, et al., “Surface plasmons at single nanoholes in Au films,” Appl. Phys. Lett. 85, 467–469 (2004).
    [CrossRef]
  22. E. M. Purcell, “Spontaneous emission probabilities at radio frequencies”, Phys. Rev. 69, 681 (1946).
  23. H. Gersen, M. F. Garcia-Parajo, and L. Novotny, et al., “Influencing the Angular Emission of a Single Molecule,” Phys. Rev. Lett. 85, 5312–5315 (2000).
    [CrossRef]
  24. D. Magde, E. Elson, and W.W. Webb, “Thermodynamic Fluctuations in a Reacting SystemMeasurement by Fluorescence Correlation Spectroscopy,” Phys. Rev. Lett. 29, 705–708 (1972).
    [CrossRef]
  25. E. Elson and D. Magde, “Fluorescence correlation spectroscopy. II. An experimental realization,” Biopolymers 13, 29–61 (1974).
    [CrossRef] [PubMed]
  26. W.P. Ambrose, P.M. Goodwin, and J.C. Martin et al., “Alterations of Single Molecule Fluorescence Lifetimes in Near-Field Optical Microscopy,” Science 265, 364–366 (1994).
    [CrossRef] [PubMed]
  27. R.X. Brian, R.C. Dunn, and X.S. Xie, “Single Molecule Emission Characteristics in Near-Field Microscopy,” Phys. Rev. Lett. 75, 4772–4775 (1995).
    [CrossRef]
  28. Single-Molecule Detection in Solution - Methods and Applications, edited byC. Zander, J. Enderlein, and R.A. Keller(VCH-Wiley, Berlin/New York, 2002).
    [CrossRef]

2005 (4)

F.D. Stefani, K. Vasilev, N. Bocchio, N. Stoyanova, and M. Kreiter, “Surface-Plasmon-Mediated Single-Molecule Fluorescence Through a Thin Metallic Film,” Phys. Rev. Lett. 94, 023005–1–4 (2005).
[CrossRef]

K.T. Samiee, M. Foquet, L. Guo, E.C. Cox, and H.G. Craighead, “λ repressor oligomerization kinetics at high concentrations using fluorescence correlation spectroscopy in zero-mode waveguides,” Biophys. J. 88, 2145–2153 (2005).
[CrossRef]

H. Rigneault, J. Capoulade, J. Dintinger, J. Wenger, N. Bonod, E. Popov, T. W. Ebbesen, and P.-F. Lenne, “Enhancement of single-molecule fluorescence detection in subwavelength apertures,” accepted for publication in Phys. Rev. Lett. (2005).
[CrossRef]

E. Popov, N. Bonod, M. Neniévre, H. Rigneault, P.-F. Lenne, and P. Chaumet, “Surface plasmon excitation on a single subwavelength hole in a metallic sheet,” Appl. Opt. 44, 2332–2337 (2005).
[CrossRef] [PubMed]

2004 (4)

A. R. Zakharian, M. Mansuripur, and J. V. Moloney, “Transmission of light through small elliptical apertures,” Opt. Express 12, 2631–2648 (2004).
[CrossRef] [PubMed]

A. Degiron, H. J. Lezec, and N. Yamamoto, et al., “Optical transmission properties of a single subwavelength aperutre in a real metal,” Opt. Commun. 239, 61–66 (2004).
[CrossRef]

L. Yin, V. K. Vlasko-Vlasov, and A. Rydh, et al., “Surface plasmons at single nanoholes in Au films,” Appl. Phys. Lett. 85, 467–469 (2004).
[CrossRef]

T. Ichimura, N. Hayasawa, M. Hashimoto, Y. Inouye, and S. Kawata, “Tip-Enhanced Coherent Anti-Stokes Raman Scattering for Vibrational Nanoimaging,” Phys. Rev. Lett. 92, 220801–220804 (2004).
[CrossRef] [PubMed]

2003 (1)

M.J. Levene, J. Korlach, S.W. Turner, M. Foquet, H.G. Craighead, and W.W. Webb, “Zero-mode waveguides for single-molecule analysis at high concentrations,” Science 299, 682–686 (2003).
[CrossRef] [PubMed]

2002 (1)

H. J. Lezec, A. Degiron, and E. Devaux, et al., “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef] [PubMed]

2000 (2)

H. Gersen, M. F. Garcia-Parajo, and L. Novotny, et al., “Influencing the Angular Emission of a Single Molecule,” Phys. Rev. Lett. 85, 5312–5315 (2000).
[CrossRef]

H.F. Hamann, A. Gallagher, and D.J. Nesbitt, “Near-field fluorescence imaging by localized field enhancement near a sharp probe tip,” Appl. Phys. Lett. 76, 1953–1957 (2000).
[CrossRef]

1999 (6)

E.J. Sánchez, L. Novotny, and X.S. Xie, “Near-Field Fluorescence Microscopy Based on Two-Photon Excitation with Metal Tips,” Phys. Rev. Lett. 82, 4014–4017 (1999).
[CrossRef]

B. Knoll and F. Keilmann, “Near-field probing of vibrational absorption for chemical microscopy,” Nature 399, 134–136 (1999).
[CrossRef]

Y. Inouye, N. Hayasawa, K. Hayashi, Z. Sekkat, and S. Kawata, “Near-field scanning optical microscope using a metallized cantilever tip for nanospectroscopy,” Proc SPIE Int. Soc. Eng. 3791, 40–48 (1999).

N. Hayasawa, Y. Inouye, and S. Kawata, “Evanescent field excitation and measurement of dye fluorescence in a metallic probe near-field scanning optical microscope,” J Microsc 194, 472–476 (1999).
[CrossRef]

J. Azoulay, A. Débarre, A. Richard, and P. Tchénio, “Field enhancement and apertureless near-field optical spec-troscopy of single molecules,” J Microsc 194, 486–490 (1999).
[CrossRef]

K. Kneipp, H. Kneipp, I. Itzkan, R.R. Dasari, and M.S. Feld, “Surface-enhanced non-linear Raman scattering at the single-molecule level,” Chem. Phys. 247, 155–162 (1999).
[CrossRef]

1998 (2)

H. Yokota, K. Saito, and T. Yanagida, “Single Molecule Imaging of Fluorescently Labeled Proteins on Metal by Surface Plasmons in Aqueous Solution,” Phys. Rev. Lett. 80, 4606–4609 (1998).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, and H. F. Ghaemi, et al., “Extraordinary optical transmission through subwavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

1997 (1)

S. Nie and S.R. Emory, “Probing single molecule and single nanoparticles by surface enhanced Raman scattering,” Science 275, 11021106 (1997).
[CrossRef] [PubMed]

1995 (1)

R.X. Brian, R.C. Dunn, and X.S. Xie, “Single Molecule Emission Characteristics in Near-Field Microscopy,” Phys. Rev. Lett. 75, 4772–4775 (1995).
[CrossRef]

1994 (1)

W.P. Ambrose, P.M. Goodwin, and J.C. Martin et al., “Alterations of Single Molecule Fluorescence Lifetimes in Near-Field Optical Microscopy,” Science 265, 364–366 (1994).
[CrossRef] [PubMed]

1974 (1)

E. Elson and D. Magde, “Fluorescence correlation spectroscopy. II. An experimental realization,” Biopolymers 13, 29–61 (1974).
[CrossRef] [PubMed]

1972 (1)

D. Magde, E. Elson, and W.W. Webb, “Thermodynamic Fluctuations in a Reacting SystemMeasurement by Fluorescence Correlation Spectroscopy,” Phys. Rev. Lett. 29, 705–708 (1972).
[CrossRef]

1946 (1)

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies”, Phys. Rev. 69, 681 (1946).

Ambrose, W.P.

W.P. Ambrose, P.M. Goodwin, and J.C. Martin et al., “Alterations of Single Molecule Fluorescence Lifetimes in Near-Field Optical Microscopy,” Science 265, 364–366 (1994).
[CrossRef] [PubMed]

Azoulay, J.

J. Azoulay, A. Débarre, A. Richard, and P. Tchénio, “Field enhancement and apertureless near-field optical spec-troscopy of single molecules,” J Microsc 194, 486–490 (1999).
[CrossRef]

Bocchio, N.

F.D. Stefani, K. Vasilev, N. Bocchio, N. Stoyanova, and M. Kreiter, “Surface-Plasmon-Mediated Single-Molecule Fluorescence Through a Thin Metallic Film,” Phys. Rev. Lett. 94, 023005–1–4 (2005).
[CrossRef]

Bonod, N.

H. Rigneault, J. Capoulade, J. Dintinger, J. Wenger, N. Bonod, E. Popov, T. W. Ebbesen, and P.-F. Lenne, “Enhancement of single-molecule fluorescence detection in subwavelength apertures,” accepted for publication in Phys. Rev. Lett. (2005).
[CrossRef]

E. Popov, N. Bonod, M. Neniévre, H. Rigneault, P.-F. Lenne, and P. Chaumet, “Surface plasmon excitation on a single subwavelength hole in a metallic sheet,” Appl. Opt. 44, 2332–2337 (2005).
[CrossRef] [PubMed]

Brian, R.X.

R.X. Brian, R.C. Dunn, and X.S. Xie, “Single Molecule Emission Characteristics in Near-Field Microscopy,” Phys. Rev. Lett. 75, 4772–4775 (1995).
[CrossRef]

Capoulade, J.

H. Rigneault, J. Capoulade, J. Dintinger, J. Wenger, N. Bonod, E. Popov, T. W. Ebbesen, and P.-F. Lenne, “Enhancement of single-molecule fluorescence detection in subwavelength apertures,” accepted for publication in Phys. Rev. Lett. (2005).
[CrossRef]

Chaumet, P.

Cox, E.C.

K.T. Samiee, M. Foquet, L. Guo, E.C. Cox, and H.G. Craighead, “λ repressor oligomerization kinetics at high concentrations using fluorescence correlation spectroscopy in zero-mode waveguides,” Biophys. J. 88, 2145–2153 (2005).
[CrossRef]

Craighead, H.G.

K.T. Samiee, M. Foquet, L. Guo, E.C. Cox, and H.G. Craighead, “λ repressor oligomerization kinetics at high concentrations using fluorescence correlation spectroscopy in zero-mode waveguides,” Biophys. J. 88, 2145–2153 (2005).
[CrossRef]

M.J. Levene, J. Korlach, S.W. Turner, M. Foquet, H.G. Craighead, and W.W. Webb, “Zero-mode waveguides for single-molecule analysis at high concentrations,” Science 299, 682–686 (2003).
[CrossRef] [PubMed]

Dasari, R.R.

K. Kneipp, H. Kneipp, I. Itzkan, R.R. Dasari, and M.S. Feld, “Surface-enhanced non-linear Raman scattering at the single-molecule level,” Chem. Phys. 247, 155–162 (1999).
[CrossRef]

Débarre, A.

J. Azoulay, A. Débarre, A. Richard, and P. Tchénio, “Field enhancement and apertureless near-field optical spec-troscopy of single molecules,” J Microsc 194, 486–490 (1999).
[CrossRef]

Degiron, A.

A. Degiron, H. J. Lezec, and N. Yamamoto, et al., “Optical transmission properties of a single subwavelength aperutre in a real metal,” Opt. Commun. 239, 61–66 (2004).
[CrossRef]

H. J. Lezec, A. Degiron, and E. Devaux, et al., “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef] [PubMed]

Devaux, E.

H. J. Lezec, A. Degiron, and E. Devaux, et al., “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef] [PubMed]

Dintinger, J.

H. Rigneault, J. Capoulade, J. Dintinger, J. Wenger, N. Bonod, E. Popov, T. W. Ebbesen, and P.-F. Lenne, “Enhancement of single-molecule fluorescence detection in subwavelength apertures,” accepted for publication in Phys. Rev. Lett. (2005).
[CrossRef]

Dunn, R.C.

R.X. Brian, R.C. Dunn, and X.S. Xie, “Single Molecule Emission Characteristics in Near-Field Microscopy,” Phys. Rev. Lett. 75, 4772–4775 (1995).
[CrossRef]

Ebbesen, T. W.

H. Rigneault, J. Capoulade, J. Dintinger, J. Wenger, N. Bonod, E. Popov, T. W. Ebbesen, and P.-F. Lenne, “Enhancement of single-molecule fluorescence detection in subwavelength apertures,” accepted for publication in Phys. Rev. Lett. (2005).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, and H. F. Ghaemi, et al., “Extraordinary optical transmission through subwavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Elson, E.

E. Elson and D. Magde, “Fluorescence correlation spectroscopy. II. An experimental realization,” Biopolymers 13, 29–61 (1974).
[CrossRef] [PubMed]

D. Magde, E. Elson, and W.W. Webb, “Thermodynamic Fluctuations in a Reacting SystemMeasurement by Fluorescence Correlation Spectroscopy,” Phys. Rev. Lett. 29, 705–708 (1972).
[CrossRef]

Emory, S.R.

S. Nie and S.R. Emory, “Probing single molecule and single nanoparticles by surface enhanced Raman scattering,” Science 275, 11021106 (1997).
[CrossRef] [PubMed]

Feld, M.S.

K. Kneipp, H. Kneipp, I. Itzkan, R.R. Dasari, and M.S. Feld, “Surface-enhanced non-linear Raman scattering at the single-molecule level,” Chem. Phys. 247, 155–162 (1999).
[CrossRef]

Foquet, M.

K.T. Samiee, M. Foquet, L. Guo, E.C. Cox, and H.G. Craighead, “λ repressor oligomerization kinetics at high concentrations using fluorescence correlation spectroscopy in zero-mode waveguides,” Biophys. J. 88, 2145–2153 (2005).
[CrossRef]

M.J. Levene, J. Korlach, S.W. Turner, M. Foquet, H.G. Craighead, and W.W. Webb, “Zero-mode waveguides for single-molecule analysis at high concentrations,” Science 299, 682–686 (2003).
[CrossRef] [PubMed]

Gallagher, A.

H.F. Hamann, A. Gallagher, and D.J. Nesbitt, “Near-field fluorescence imaging by localized field enhancement near a sharp probe tip,” Appl. Phys. Lett. 76, 1953–1957 (2000).
[CrossRef]

Garcia-Parajo, M. F.

H. Gersen, M. F. Garcia-Parajo, and L. Novotny, et al., “Influencing the Angular Emission of a Single Molecule,” Phys. Rev. Lett. 85, 5312–5315 (2000).
[CrossRef]

Gersen, H.

H. Gersen, M. F. Garcia-Parajo, and L. Novotny, et al., “Influencing the Angular Emission of a Single Molecule,” Phys. Rev. Lett. 85, 5312–5315 (2000).
[CrossRef]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, and H. F. Ghaemi, et al., “Extraordinary optical transmission through subwavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Goodwin, P.M.

W.P. Ambrose, P.M. Goodwin, and J.C. Martin et al., “Alterations of Single Molecule Fluorescence Lifetimes in Near-Field Optical Microscopy,” Science 265, 364–366 (1994).
[CrossRef] [PubMed]

Guo, L.

K.T. Samiee, M. Foquet, L. Guo, E.C. Cox, and H.G. Craighead, “λ repressor oligomerization kinetics at high concentrations using fluorescence correlation spectroscopy in zero-mode waveguides,” Biophys. J. 88, 2145–2153 (2005).
[CrossRef]

Hamann, H.F.

H.F. Hamann, A. Gallagher, and D.J. Nesbitt, “Near-field fluorescence imaging by localized field enhancement near a sharp probe tip,” Appl. Phys. Lett. 76, 1953–1957 (2000).
[CrossRef]

Hashimoto, M.

T. Ichimura, N. Hayasawa, M. Hashimoto, Y. Inouye, and S. Kawata, “Tip-Enhanced Coherent Anti-Stokes Raman Scattering for Vibrational Nanoimaging,” Phys. Rev. Lett. 92, 220801–220804 (2004).
[CrossRef] [PubMed]

Hayasawa, N.

T. Ichimura, N. Hayasawa, M. Hashimoto, Y. Inouye, and S. Kawata, “Tip-Enhanced Coherent Anti-Stokes Raman Scattering for Vibrational Nanoimaging,” Phys. Rev. Lett. 92, 220801–220804 (2004).
[CrossRef] [PubMed]

Y. Inouye, N. Hayasawa, K. Hayashi, Z. Sekkat, and S. Kawata, “Near-field scanning optical microscope using a metallized cantilever tip for nanospectroscopy,” Proc SPIE Int. Soc. Eng. 3791, 40–48 (1999).

N. Hayasawa, Y. Inouye, and S. Kawata, “Evanescent field excitation and measurement of dye fluorescence in a metallic probe near-field scanning optical microscope,” J Microsc 194, 472–476 (1999).
[CrossRef]

Hayashi, K.

Y. Inouye, N. Hayasawa, K. Hayashi, Z. Sekkat, and S. Kawata, “Near-field scanning optical microscope using a metallized cantilever tip for nanospectroscopy,” Proc SPIE Int. Soc. Eng. 3791, 40–48 (1999).

Ichimura, T.

T. Ichimura, N. Hayasawa, M. Hashimoto, Y. Inouye, and S. Kawata, “Tip-Enhanced Coherent Anti-Stokes Raman Scattering for Vibrational Nanoimaging,” Phys. Rev. Lett. 92, 220801–220804 (2004).
[CrossRef] [PubMed]

Inouye, Y.

T. Ichimura, N. Hayasawa, M. Hashimoto, Y. Inouye, and S. Kawata, “Tip-Enhanced Coherent Anti-Stokes Raman Scattering for Vibrational Nanoimaging,” Phys. Rev. Lett. 92, 220801–220804 (2004).
[CrossRef] [PubMed]

Y. Inouye, N. Hayasawa, K. Hayashi, Z. Sekkat, and S. Kawata, “Near-field scanning optical microscope using a metallized cantilever tip for nanospectroscopy,” Proc SPIE Int. Soc. Eng. 3791, 40–48 (1999).

N. Hayasawa, Y. Inouye, and S. Kawata, “Evanescent field excitation and measurement of dye fluorescence in a metallic probe near-field scanning optical microscope,” J Microsc 194, 472–476 (1999).
[CrossRef]

Itzkan, I.

K. Kneipp, H. Kneipp, I. Itzkan, R.R. Dasari, and M.S. Feld, “Surface-enhanced non-linear Raman scattering at the single-molecule level,” Chem. Phys. 247, 155–162 (1999).
[CrossRef]

Kawata, S.

T. Ichimura, N. Hayasawa, M. Hashimoto, Y. Inouye, and S. Kawata, “Tip-Enhanced Coherent Anti-Stokes Raman Scattering for Vibrational Nanoimaging,” Phys. Rev. Lett. 92, 220801–220804 (2004).
[CrossRef] [PubMed]

Y. Inouye, N. Hayasawa, K. Hayashi, Z. Sekkat, and S. Kawata, “Near-field scanning optical microscope using a metallized cantilever tip for nanospectroscopy,” Proc SPIE Int. Soc. Eng. 3791, 40–48 (1999).

N. Hayasawa, Y. Inouye, and S. Kawata, “Evanescent field excitation and measurement of dye fluorescence in a metallic probe near-field scanning optical microscope,” J Microsc 194, 472–476 (1999).
[CrossRef]

Keilmann, F.

B. Knoll and F. Keilmann, “Near-field probing of vibrational absorption for chemical microscopy,” Nature 399, 134–136 (1999).
[CrossRef]

Kneipp, H.

K. Kneipp, H. Kneipp, I. Itzkan, R.R. Dasari, and M.S. Feld, “Surface-enhanced non-linear Raman scattering at the single-molecule level,” Chem. Phys. 247, 155–162 (1999).
[CrossRef]

Kneipp, K.

K. Kneipp, H. Kneipp, I. Itzkan, R.R. Dasari, and M.S. Feld, “Surface-enhanced non-linear Raman scattering at the single-molecule level,” Chem. Phys. 247, 155–162 (1999).
[CrossRef]

Knoll, B.

B. Knoll and F. Keilmann, “Near-field probing of vibrational absorption for chemical microscopy,” Nature 399, 134–136 (1999).
[CrossRef]

Korlach, J.

M.J. Levene, J. Korlach, S.W. Turner, M. Foquet, H.G. Craighead, and W.W. Webb, “Zero-mode waveguides for single-molecule analysis at high concentrations,” Science 299, 682–686 (2003).
[CrossRef] [PubMed]

Kreiter, M.

F.D. Stefani, K. Vasilev, N. Bocchio, N. Stoyanova, and M. Kreiter, “Surface-Plasmon-Mediated Single-Molecule Fluorescence Through a Thin Metallic Film,” Phys. Rev. Lett. 94, 023005–1–4 (2005).
[CrossRef]

Lenne, P.-F.

H. Rigneault, J. Capoulade, J. Dintinger, J. Wenger, N. Bonod, E. Popov, T. W. Ebbesen, and P.-F. Lenne, “Enhancement of single-molecule fluorescence detection in subwavelength apertures,” accepted for publication in Phys. Rev. Lett. (2005).
[CrossRef]

E. Popov, N. Bonod, M. Neniévre, H. Rigneault, P.-F. Lenne, and P. Chaumet, “Surface plasmon excitation on a single subwavelength hole in a metallic sheet,” Appl. Opt. 44, 2332–2337 (2005).
[CrossRef] [PubMed]

Levene, M.J.

M.J. Levene, J. Korlach, S.W. Turner, M. Foquet, H.G. Craighead, and W.W. Webb, “Zero-mode waveguides for single-molecule analysis at high concentrations,” Science 299, 682–686 (2003).
[CrossRef] [PubMed]

Lezec, H. J.

A. Degiron, H. J. Lezec, and N. Yamamoto, et al., “Optical transmission properties of a single subwavelength aperutre in a real metal,” Opt. Commun. 239, 61–66 (2004).
[CrossRef]

H. J. Lezec, A. Degiron, and E. Devaux, et al., “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef] [PubMed]

T. W. Ebbesen, H. J. Lezec, and H. F. Ghaemi, et al., “Extraordinary optical transmission through subwavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Magde, D.

E. Elson and D. Magde, “Fluorescence correlation spectroscopy. II. An experimental realization,” Biopolymers 13, 29–61 (1974).
[CrossRef] [PubMed]

D. Magde, E. Elson, and W.W. Webb, “Thermodynamic Fluctuations in a Reacting SystemMeasurement by Fluorescence Correlation Spectroscopy,” Phys. Rev. Lett. 29, 705–708 (1972).
[CrossRef]

Mansuripur, M.

Martin, J.C.

W.P. Ambrose, P.M. Goodwin, and J.C. Martin et al., “Alterations of Single Molecule Fluorescence Lifetimes in Near-Field Optical Microscopy,” Science 265, 364–366 (1994).
[CrossRef] [PubMed]

Moloney, J. V.

Neniévre, M.

Nesbitt, D.J.

H.F. Hamann, A. Gallagher, and D.J. Nesbitt, “Near-field fluorescence imaging by localized field enhancement near a sharp probe tip,” Appl. Phys. Lett. 76, 1953–1957 (2000).
[CrossRef]

Nie, S.

S. Nie and S.R. Emory, “Probing single molecule and single nanoparticles by surface enhanced Raman scattering,” Science 275, 11021106 (1997).
[CrossRef] [PubMed]

Novotny, L.

H. Gersen, M. F. Garcia-Parajo, and L. Novotny, et al., “Influencing the Angular Emission of a Single Molecule,” Phys. Rev. Lett. 85, 5312–5315 (2000).
[CrossRef]

E.J. Sánchez, L. Novotny, and X.S. Xie, “Near-Field Fluorescence Microscopy Based on Two-Photon Excitation with Metal Tips,” Phys. Rev. Lett. 82, 4014–4017 (1999).
[CrossRef]

Popov, E.

H. Rigneault, J. Capoulade, J. Dintinger, J. Wenger, N. Bonod, E. Popov, T. W. Ebbesen, and P.-F. Lenne, “Enhancement of single-molecule fluorescence detection in subwavelength apertures,” accepted for publication in Phys. Rev. Lett. (2005).
[CrossRef]

E. Popov, N. Bonod, M. Neniévre, H. Rigneault, P.-F. Lenne, and P. Chaumet, “Surface plasmon excitation on a single subwavelength hole in a metallic sheet,” Appl. Opt. 44, 2332–2337 (2005).
[CrossRef] [PubMed]

Purcell, E. M.

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies”, Phys. Rev. 69, 681 (1946).

Richard, A.

J. Azoulay, A. Débarre, A. Richard, and P. Tchénio, “Field enhancement and apertureless near-field optical spec-troscopy of single molecules,” J Microsc 194, 486–490 (1999).
[CrossRef]

Rigneault, H.

H. Rigneault, J. Capoulade, J. Dintinger, J. Wenger, N. Bonod, E. Popov, T. W. Ebbesen, and P.-F. Lenne, “Enhancement of single-molecule fluorescence detection in subwavelength apertures,” accepted for publication in Phys. Rev. Lett. (2005).
[CrossRef]

E. Popov, N. Bonod, M. Neniévre, H. Rigneault, P.-F. Lenne, and P. Chaumet, “Surface plasmon excitation on a single subwavelength hole in a metallic sheet,” Appl. Opt. 44, 2332–2337 (2005).
[CrossRef] [PubMed]

Rydh, A.

L. Yin, V. K. Vlasko-Vlasov, and A. Rydh, et al., “Surface plasmons at single nanoholes in Au films,” Appl. Phys. Lett. 85, 467–469 (2004).
[CrossRef]

Saito, K.

H. Yokota, K. Saito, and T. Yanagida, “Single Molecule Imaging of Fluorescently Labeled Proteins on Metal by Surface Plasmons in Aqueous Solution,” Phys. Rev. Lett. 80, 4606–4609 (1998).
[CrossRef]

Samiee, K.T.

K.T. Samiee, M. Foquet, L. Guo, E.C. Cox, and H.G. Craighead, “λ repressor oligomerization kinetics at high concentrations using fluorescence correlation spectroscopy in zero-mode waveguides,” Biophys. J. 88, 2145–2153 (2005).
[CrossRef]

Sánchez, E.J.

E.J. Sánchez, L. Novotny, and X.S. Xie, “Near-Field Fluorescence Microscopy Based on Two-Photon Excitation with Metal Tips,” Phys. Rev. Lett. 82, 4014–4017 (1999).
[CrossRef]

Sekkat, Z.

Y. Inouye, N. Hayasawa, K. Hayashi, Z. Sekkat, and S. Kawata, “Near-field scanning optical microscope using a metallized cantilever tip for nanospectroscopy,” Proc SPIE Int. Soc. Eng. 3791, 40–48 (1999).

Stefani, F.D.

F.D. Stefani, K. Vasilev, N. Bocchio, N. Stoyanova, and M. Kreiter, “Surface-Plasmon-Mediated Single-Molecule Fluorescence Through a Thin Metallic Film,” Phys. Rev. Lett. 94, 023005–1–4 (2005).
[CrossRef]

Stoyanova, N.

F.D. Stefani, K. Vasilev, N. Bocchio, N. Stoyanova, and M. Kreiter, “Surface-Plasmon-Mediated Single-Molecule Fluorescence Through a Thin Metallic Film,” Phys. Rev. Lett. 94, 023005–1–4 (2005).
[CrossRef]

Tchénio, P.

J. Azoulay, A. Débarre, A. Richard, and P. Tchénio, “Field enhancement and apertureless near-field optical spec-troscopy of single molecules,” J Microsc 194, 486–490 (1999).
[CrossRef]

Turner, S.W.

M.J. Levene, J. Korlach, S.W. Turner, M. Foquet, H.G. Craighead, and W.W. Webb, “Zero-mode waveguides for single-molecule analysis at high concentrations,” Science 299, 682–686 (2003).
[CrossRef] [PubMed]

Vasilev, K.

F.D. Stefani, K. Vasilev, N. Bocchio, N. Stoyanova, and M. Kreiter, “Surface-Plasmon-Mediated Single-Molecule Fluorescence Through a Thin Metallic Film,” Phys. Rev. Lett. 94, 023005–1–4 (2005).
[CrossRef]

Vlasko-Vlasov, V. K.

L. Yin, V. K. Vlasko-Vlasov, and A. Rydh, et al., “Surface plasmons at single nanoholes in Au films,” Appl. Phys. Lett. 85, 467–469 (2004).
[CrossRef]

Webb, W.W.

M.J. Levene, J. Korlach, S.W. Turner, M. Foquet, H.G. Craighead, and W.W. Webb, “Zero-mode waveguides for single-molecule analysis at high concentrations,” Science 299, 682–686 (2003).
[CrossRef] [PubMed]

D. Magde, E. Elson, and W.W. Webb, “Thermodynamic Fluctuations in a Reacting SystemMeasurement by Fluorescence Correlation Spectroscopy,” Phys. Rev. Lett. 29, 705–708 (1972).
[CrossRef]

Wenger, J.

H. Rigneault, J. Capoulade, J. Dintinger, J. Wenger, N. Bonod, E. Popov, T. W. Ebbesen, and P.-F. Lenne, “Enhancement of single-molecule fluorescence detection in subwavelength apertures,” accepted for publication in Phys. Rev. Lett. (2005).
[CrossRef]

Xie, X.S.

E.J. Sánchez, L. Novotny, and X.S. Xie, “Near-Field Fluorescence Microscopy Based on Two-Photon Excitation with Metal Tips,” Phys. Rev. Lett. 82, 4014–4017 (1999).
[CrossRef]

R.X. Brian, R.C. Dunn, and X.S. Xie, “Single Molecule Emission Characteristics in Near-Field Microscopy,” Phys. Rev. Lett. 75, 4772–4775 (1995).
[CrossRef]

Yamamoto, N.

A. Degiron, H. J. Lezec, and N. Yamamoto, et al., “Optical transmission properties of a single subwavelength aperutre in a real metal,” Opt. Commun. 239, 61–66 (2004).
[CrossRef]

Yanagida, T.

H. Yokota, K. Saito, and T. Yanagida, “Single Molecule Imaging of Fluorescently Labeled Proteins on Metal by Surface Plasmons in Aqueous Solution,” Phys. Rev. Lett. 80, 4606–4609 (1998).
[CrossRef]

Yin, L.

L. Yin, V. K. Vlasko-Vlasov, and A. Rydh, et al., “Surface plasmons at single nanoholes in Au films,” Appl. Phys. Lett. 85, 467–469 (2004).
[CrossRef]

Yokota, H.

H. Yokota, K. Saito, and T. Yanagida, “Single Molecule Imaging of Fluorescently Labeled Proteins on Metal by Surface Plasmons in Aqueous Solution,” Phys. Rev. Lett. 80, 4606–4609 (1998).
[CrossRef]

Zakharian, A. R.

accepted for publication in Phys. Rev. Lett. (1)

H. Rigneault, J. Capoulade, J. Dintinger, J. Wenger, N. Bonod, E. Popov, T. W. Ebbesen, and P.-F. Lenne, “Enhancement of single-molecule fluorescence detection in subwavelength apertures,” accepted for publication in Phys. Rev. Lett. (2005).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

L. Yin, V. K. Vlasko-Vlasov, and A. Rydh, et al., “Surface plasmons at single nanoholes in Au films,” Appl. Phys. Lett. 85, 467–469 (2004).
[CrossRef]

H.F. Hamann, A. Gallagher, and D.J. Nesbitt, “Near-field fluorescence imaging by localized field enhancement near a sharp probe tip,” Appl. Phys. Lett. 76, 1953–1957 (2000).
[CrossRef]

Biophys. J. (1)

K.T. Samiee, M. Foquet, L. Guo, E.C. Cox, and H.G. Craighead, “λ repressor oligomerization kinetics at high concentrations using fluorescence correlation spectroscopy in zero-mode waveguides,” Biophys. J. 88, 2145–2153 (2005).
[CrossRef]

Biopolymers (1)

E. Elson and D. Magde, “Fluorescence correlation spectroscopy. II. An experimental realization,” Biopolymers 13, 29–61 (1974).
[CrossRef] [PubMed]

Chem. Phys. (1)

K. Kneipp, H. Kneipp, I. Itzkan, R.R. Dasari, and M.S. Feld, “Surface-enhanced non-linear Raman scattering at the single-molecule level,” Chem. Phys. 247, 155–162 (1999).
[CrossRef]

J Microsc (2)

N. Hayasawa, Y. Inouye, and S. Kawata, “Evanescent field excitation and measurement of dye fluorescence in a metallic probe near-field scanning optical microscope,” J Microsc 194, 472–476 (1999).
[CrossRef]

J. Azoulay, A. Débarre, A. Richard, and P. Tchénio, “Field enhancement and apertureless near-field optical spec-troscopy of single molecules,” J Microsc 194, 486–490 (1999).
[CrossRef]

Nature (2)

B. Knoll and F. Keilmann, “Near-field probing of vibrational absorption for chemical microscopy,” Nature 399, 134–136 (1999).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, and H. F. Ghaemi, et al., “Extraordinary optical transmission through subwavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Opt. Commun. (1)

A. Degiron, H. J. Lezec, and N. Yamamoto, et al., “Optical transmission properties of a single subwavelength aperutre in a real metal,” Opt. Commun. 239, 61–66 (2004).
[CrossRef]

Opt. Express (1)

Phys. Rev. (1)

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies”, Phys. Rev. 69, 681 (1946).

Phys. Rev. Lett. (7)

H. Gersen, M. F. Garcia-Parajo, and L. Novotny, et al., “Influencing the Angular Emission of a Single Molecule,” Phys. Rev. Lett. 85, 5312–5315 (2000).
[CrossRef]

D. Magde, E. Elson, and W.W. Webb, “Thermodynamic Fluctuations in a Reacting SystemMeasurement by Fluorescence Correlation Spectroscopy,” Phys. Rev. Lett. 29, 705–708 (1972).
[CrossRef]

R.X. Brian, R.C. Dunn, and X.S. Xie, “Single Molecule Emission Characteristics in Near-Field Microscopy,” Phys. Rev. Lett. 75, 4772–4775 (1995).
[CrossRef]

H. Yokota, K. Saito, and T. Yanagida, “Single Molecule Imaging of Fluorescently Labeled Proteins on Metal by Surface Plasmons in Aqueous Solution,” Phys. Rev. Lett. 80, 4606–4609 (1998).
[CrossRef]

F.D. Stefani, K. Vasilev, N. Bocchio, N. Stoyanova, and M. Kreiter, “Surface-Plasmon-Mediated Single-Molecule Fluorescence Through a Thin Metallic Film,” Phys. Rev. Lett. 94, 023005–1–4 (2005).
[CrossRef]

T. Ichimura, N. Hayasawa, M. Hashimoto, Y. Inouye, and S. Kawata, “Tip-Enhanced Coherent Anti-Stokes Raman Scattering for Vibrational Nanoimaging,” Phys. Rev. Lett. 92, 220801–220804 (2004).
[CrossRef] [PubMed]

E.J. Sánchez, L. Novotny, and X.S. Xie, “Near-Field Fluorescence Microscopy Based on Two-Photon Excitation with Metal Tips,” Phys. Rev. Lett. 82, 4014–4017 (1999).
[CrossRef]

Proc SPIE Int. Soc. Eng. (1)

Y. Inouye, N. Hayasawa, K. Hayashi, Z. Sekkat, and S. Kawata, “Near-field scanning optical microscope using a metallized cantilever tip for nanospectroscopy,” Proc SPIE Int. Soc. Eng. 3791, 40–48 (1999).

Science (4)

M.J. Levene, J. Korlach, S.W. Turner, M. Foquet, H.G. Craighead, and W.W. Webb, “Zero-mode waveguides for single-molecule analysis at high concentrations,” Science 299, 682–686 (2003).
[CrossRef] [PubMed]

H. J. Lezec, A. Degiron, and E. Devaux, et al., “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef] [PubMed]

S. Nie and S.R. Emory, “Probing single molecule and single nanoparticles by surface enhanced Raman scattering,” Science 275, 11021106 (1997).
[CrossRef] [PubMed]

W.P. Ambrose, P.M. Goodwin, and J.C. Martin et al., “Alterations of Single Molecule Fluorescence Lifetimes in Near-Field Optical Microscopy,” Science 265, 364–366 (1994).
[CrossRef] [PubMed]

Other (2)

Single-Molecule Detection in Solution - Methods and Applications, edited byC. Zander, J. Enderlein, and R.A. Keller(VCH-Wiley, Berlin/New York, 2002).
[CrossRef]

Near-Field Optics and Surface Plasmon Polaritons, edited byS. Kawata(Springer, Berlin, 2001).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Left : Scanning electron microscope image of an isolated 340 × 115 nm2 subwave-length aperture milled in an Al film coated on a microscope slip. Right : schematic view of the optical setup for fluorescence correlation spectroscopy (APD : avalanche photodiode).

Fig. 2.
Fig. 2.

Intensity transmission properties of an isolated rectangular 565 × 105 nm2 (blue filled circles), 380 × 160 nm2 (red empty circles), or squared 250 × 250 nm2 (green boxes) nanometric aperture measured at 488 nm while changing the incoming linear polarization direction θ.

Fig. 3.
Fig. 3.

Transmission spectrum of a 490 × 105 nm2 rectangular hole milled in an Al layer for different linear polarization direction θ of the excitation field, when a droplet of water is deposited over the aperture (solid curves), or when the metal surface is left dry (dashed curves).

Fig. 4.
Fig. 4.

Fluorescence autocorrelation functions in open solution (black dots) and in a 565 × 105 nm2 hole for θ = 0° (red empty circles) and θ = 90° (blue filled squares) for an excitation power of 300 μW. The molecular concentration for the experiment in open solution was set to 20 nM, while it was taken to 300 nM within the aperture. The solid lines originate from numerical fits assuming a 3D diffusion. For the 565 × 105 nm2 aperture and θ=0°, one gets N = 0.3, nT = 0.35, count rate per molecule = 50 kHz, while for θ = 90°, N = 2.4, nT = 0.35, count rate per molecule =18 kHz (the background mean intensity was 〈b〉 = 30 kHz). The inset shows the same traces normalized to unity (arrows indicate the time at half-maximum).

Fig. 5.
Fig. 5.

Detected count rate per molecule per second η versus the incident excitation power Pex in a 565 × 105 nm2 aperture and in open solution. The inset displays the influence of the excitation power on the triplet amplitude nT (obtained from numerical fits and used in our calculations).

Fig. 6.
Fig. 6.

Fluorescence decay curves in open solution (solid gray) and into a 565 × 105 nm2 nanohole for θ = 0° (red empty circles) and θ = 90° (blue filled squares).

Tables (1)

Tables Icon

Table 1. Experimental results when θ is switched from 90° to 0°.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

g ( 2 ) ( τ ) = n ( t ) n ( t + τ ) n ( t ) 2 ,
g ( 2 ) ( τ ) = 1 + 1 + n T ( 1 + exp ( τ / τ T ) ) N ( 1 b i ) 2 1 ( 1 + τ / τ d ) 1 + s 2 τ / τ d

Metrics