Abstract

We demonstrate a novel approach for coupling freely propagating THz pulses onto a metal wire waveguide utilizing grooves fabricated directly into the metal. Using broadband THz pulses incident on the wire, we use metal segments containing zero, one, three, and eight uniformly spaced grooves to launch surface propagating multi-cycle pulses along the wire. We observe a one-to-one correspondence between the groove number and the number of oscillations in the THz waveform radiated from the end of the waveguide. We further demonstrate that this coupled radiation is radially polarized. Although the cross-sectional parameters of the grooves are identical in the present measurements, alteration of the individual grooves in a controlled manner should allow for arbitrarily shaped THz pulses to be launched on the waveguide.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Mendis and D. Grischkowsky, “Plastic ribbon THz waveguides,“ J. Appl. Phys. 88, 4449–4451 (2000).
    [CrossRef]
  2. S. P Jamison, R. W. McGowan, and D. Grischkowsky, “Single-mode waveguide propagation and reshaping of sub-ps terahertz pulses in sapphire fiber,“ Appl. Phys. Lett. 76, 1987–1989 (2000).
    [CrossRef]
  3. G. Gallot, S. P. Jamison, R. W. McGowan, and D. Grischkowsky, “Terahertz waveguides,“ J. Opt. Soc. Am. B 17, 851–863 (2000).
    [CrossRef]
  4. H. Han, H. Park, M. Cho, and J. Kim, “Terahertz pulse propagation in a plastic photonic crystal fiber,“ Appl. Phys. Lett. 80, 2634–2636 (2002).
    [CrossRef]
  5. M. Goto, A. Quema, H. Takahashi, S. Ono, and N. Sarukura, “Teflon photonic crystal fiber as terahertz waveguide,“ Jpn. J. Appl. Phys. 43, L317–L319 (2004).
    [CrossRef]
  6. R. W. McGowan, G. Gallot, and D. Grischkowsky, “Propagation of ultrawideband short pulses of THz radiation through submillimeter-diameter circular waveguides,“ Opt. Lett. 24, 1431–1433 (1999).
    [CrossRef]
  7. R. Mendis and D. Grischkowsky, “Undistorted guided-wave propagation of subpicosecond terahertz pulses,“ Opt. Lett. 26, 846–848 (2001).
    [CrossRef]
  8. S. Coleman and D. Grischkowsky, “A THz transverse electromagnetic mode two dimensional interconnect layer incorporating quasi-optics,“ Appl. Phys. Lett. 83, 3656–3658 (2003).
    [CrossRef]
  9. J. A. Harrington, R. George, P. Pedersen, and E. Mueller, “Hollow polycarbonate waveguides with inner Cu coatings for delivery of terahertz radiation,“ Opt. Express 12, 5263–5268 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-21-5263.
    [CrossRef] [PubMed]
  10. S. Coleman and D. Grischkowsky, “Parallel plate THz transmitter,“ Appl. Phys. Lett. 84, 654 (2004).
    [CrossRef]
  11. H. Cao, R.A. Linke, and A. Nahata, “Broadband generation of terahertz radiation in a waveguide,” Appl. Phys. Lett. 29, 1751–1753 (2004).
  12. R.E. Collin, Field Theory of Guided Waves (New York: IEEE, 1991).
  13. K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,“ Nature 432, 376–379 (2004).
    [CrossRef] [PubMed]
  14. T.-I. Jeon, J. Zhang, and D. Grischkowsky, “THz Sommerfeld wave propagation on a single metal wire,” Appl. Phys. Lett. 86, 161904/1-3 (2005).
    [CrossRef]
  15. Q. Cao and J. Jahns, “Azimuthally polarized surface plasmons as effective terahertz waveguides,“ Opt. Express 13, 511–518 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-2-511.
    [CrossRef] [PubMed]
  16. A. Sommerfeld, Electrodynamics (Academic, New York, 1952), pp. 177–190.
  17. G. Goubau, “Surface waves and their application to transmission lines,“ J. Appl. Phys. 21, 1119–1128 (1950).
    [CrossRef]
  18. F. Sobel, F.L. Wentworth, and J.C. Wiltse, “Quasi-optical surface waveguide and other components for the 100- to 300-Gc region,” IRE Trans. Microwave Theory Tech. 9, 512–518 (1961).
    [CrossRef]
  19. G. Goubau, “Single-conductor surface-wave transmission lines,” Proc. IRE 39, 619–623 (1951).
    [CrossRef]
  20. K. Alonso and M.J. Hagmann, “Comparison of three different methods for coupling of microwave and terahertz signals generated by resonant laser-assisted field emission,” J. Vac. Sci. Technol. B 19, 68–71 (2001).
    [CrossRef]
  21. H. Cao, A. Agrawal, and A. Nahata, “Controlling the transmission resonance lineshape of a single subwavelength aperture,“ Opt. Express 13, 763–769 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-3-763.
    [CrossRef] [PubMed]
  22. A. Agrawal, H. Cao, and A. Nahata, “Time-domain analysis of enhanced transmission through a single subwavelength aperture,“ Opt. Express 13, 3535–3542 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-9-3535.
    [CrossRef] [PubMed]
  23. A. Agrawal, H. Cao, and A. Nahata, “Excitation and scattering of surface plasmon-polaritons on structured metal films and their application to pulse shaping and enhanced transmission,“ New J. Phys. (submitted).
  24. R. Gordon, A.G. Brolo, A. McKinnon, A. Rajora, B. Leatham, and K.L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett. 92, 037401 (2004).
    [CrossRef] [PubMed]

2005 (4)

2004 (6)

R. Gordon, A.G. Brolo, A. McKinnon, A. Rajora, B. Leatham, and K.L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett. 92, 037401 (2004).
[CrossRef] [PubMed]

S. Coleman and D. Grischkowsky, “Parallel plate THz transmitter,“ Appl. Phys. Lett. 84, 654 (2004).
[CrossRef]

H. Cao, R.A. Linke, and A. Nahata, “Broadband generation of terahertz radiation in a waveguide,” Appl. Phys. Lett. 29, 1751–1753 (2004).

K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,“ Nature 432, 376–379 (2004).
[CrossRef] [PubMed]

M. Goto, A. Quema, H. Takahashi, S. Ono, and N. Sarukura, “Teflon photonic crystal fiber as terahertz waveguide,“ Jpn. J. Appl. Phys. 43, L317–L319 (2004).
[CrossRef]

J. A. Harrington, R. George, P. Pedersen, and E. Mueller, “Hollow polycarbonate waveguides with inner Cu coatings for delivery of terahertz radiation,“ Opt. Express 12, 5263–5268 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-21-5263.
[CrossRef] [PubMed]

2003 (1)

S. Coleman and D. Grischkowsky, “A THz transverse electromagnetic mode two dimensional interconnect layer incorporating quasi-optics,“ Appl. Phys. Lett. 83, 3656–3658 (2003).
[CrossRef]

2002 (1)

H. Han, H. Park, M. Cho, and J. Kim, “Terahertz pulse propagation in a plastic photonic crystal fiber,“ Appl. Phys. Lett. 80, 2634–2636 (2002).
[CrossRef]

2001 (2)

K. Alonso and M.J. Hagmann, “Comparison of three different methods for coupling of microwave and terahertz signals generated by resonant laser-assisted field emission,” J. Vac. Sci. Technol. B 19, 68–71 (2001).
[CrossRef]

R. Mendis and D. Grischkowsky, “Undistorted guided-wave propagation of subpicosecond terahertz pulses,“ Opt. Lett. 26, 846–848 (2001).
[CrossRef]

2000 (3)

G. Gallot, S. P. Jamison, R. W. McGowan, and D. Grischkowsky, “Terahertz waveguides,“ J. Opt. Soc. Am. B 17, 851–863 (2000).
[CrossRef]

R. Mendis and D. Grischkowsky, “Plastic ribbon THz waveguides,“ J. Appl. Phys. 88, 4449–4451 (2000).
[CrossRef]

S. P Jamison, R. W. McGowan, and D. Grischkowsky, “Single-mode waveguide propagation and reshaping of sub-ps terahertz pulses in sapphire fiber,“ Appl. Phys. Lett. 76, 1987–1989 (2000).
[CrossRef]

1999 (1)

1961 (1)

F. Sobel, F.L. Wentworth, and J.C. Wiltse, “Quasi-optical surface waveguide and other components for the 100- to 300-Gc region,” IRE Trans. Microwave Theory Tech. 9, 512–518 (1961).
[CrossRef]

1951 (1)

G. Goubau, “Single-conductor surface-wave transmission lines,” Proc. IRE 39, 619–623 (1951).
[CrossRef]

1950 (1)

G. Goubau, “Surface waves and their application to transmission lines,“ J. Appl. Phys. 21, 1119–1128 (1950).
[CrossRef]

Agrawal, A.

Alonso, K.

K. Alonso and M.J. Hagmann, “Comparison of three different methods for coupling of microwave and terahertz signals generated by resonant laser-assisted field emission,” J. Vac. Sci. Technol. B 19, 68–71 (2001).
[CrossRef]

Brolo, A.G.

R. Gordon, A.G. Brolo, A. McKinnon, A. Rajora, B. Leatham, and K.L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett. 92, 037401 (2004).
[CrossRef] [PubMed]

Cao, H.

A. Agrawal, H. Cao, and A. Nahata, “Time-domain analysis of enhanced transmission through a single subwavelength aperture,“ Opt. Express 13, 3535–3542 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-9-3535.
[CrossRef] [PubMed]

H. Cao, A. Agrawal, and A. Nahata, “Controlling the transmission resonance lineshape of a single subwavelength aperture,“ Opt. Express 13, 763–769 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-3-763.
[CrossRef] [PubMed]

H. Cao, R.A. Linke, and A. Nahata, “Broadband generation of terahertz radiation in a waveguide,” Appl. Phys. Lett. 29, 1751–1753 (2004).

A. Agrawal, H. Cao, and A. Nahata, “Excitation and scattering of surface plasmon-polaritons on structured metal films and their application to pulse shaping and enhanced transmission,“ New J. Phys. (submitted).

Cao, Q.

Cho, M.

H. Han, H. Park, M. Cho, and J. Kim, “Terahertz pulse propagation in a plastic photonic crystal fiber,“ Appl. Phys. Lett. 80, 2634–2636 (2002).
[CrossRef]

Coleman, S.

S. Coleman and D. Grischkowsky, “Parallel plate THz transmitter,“ Appl. Phys. Lett. 84, 654 (2004).
[CrossRef]

S. Coleman and D. Grischkowsky, “A THz transverse electromagnetic mode two dimensional interconnect layer incorporating quasi-optics,“ Appl. Phys. Lett. 83, 3656–3658 (2003).
[CrossRef]

Collin, R.E.

R.E. Collin, Field Theory of Guided Waves (New York: IEEE, 1991).

Gallot, G.

George, R.

Gordon, R.

R. Gordon, A.G. Brolo, A. McKinnon, A. Rajora, B. Leatham, and K.L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett. 92, 037401 (2004).
[CrossRef] [PubMed]

Goto, M.

M. Goto, A. Quema, H. Takahashi, S. Ono, and N. Sarukura, “Teflon photonic crystal fiber as terahertz waveguide,“ Jpn. J. Appl. Phys. 43, L317–L319 (2004).
[CrossRef]

Goubau, G.

G. Goubau, “Single-conductor surface-wave transmission lines,” Proc. IRE 39, 619–623 (1951).
[CrossRef]

G. Goubau, “Surface waves and their application to transmission lines,“ J. Appl. Phys. 21, 1119–1128 (1950).
[CrossRef]

Grischkowsky, D.

T.-I. Jeon, J. Zhang, and D. Grischkowsky, “THz Sommerfeld wave propagation on a single metal wire,” Appl. Phys. Lett. 86, 161904/1-3 (2005).
[CrossRef]

S. Coleman and D. Grischkowsky, “Parallel plate THz transmitter,“ Appl. Phys. Lett. 84, 654 (2004).
[CrossRef]

S. Coleman and D. Grischkowsky, “A THz transverse electromagnetic mode two dimensional interconnect layer incorporating quasi-optics,“ Appl. Phys. Lett. 83, 3656–3658 (2003).
[CrossRef]

R. Mendis and D. Grischkowsky, “Undistorted guided-wave propagation of subpicosecond terahertz pulses,“ Opt. Lett. 26, 846–848 (2001).
[CrossRef]

G. Gallot, S. P. Jamison, R. W. McGowan, and D. Grischkowsky, “Terahertz waveguides,“ J. Opt. Soc. Am. B 17, 851–863 (2000).
[CrossRef]

R. Mendis and D. Grischkowsky, “Plastic ribbon THz waveguides,“ J. Appl. Phys. 88, 4449–4451 (2000).
[CrossRef]

S. P Jamison, R. W. McGowan, and D. Grischkowsky, “Single-mode waveguide propagation and reshaping of sub-ps terahertz pulses in sapphire fiber,“ Appl. Phys. Lett. 76, 1987–1989 (2000).
[CrossRef]

R. W. McGowan, G. Gallot, and D. Grischkowsky, “Propagation of ultrawideband short pulses of THz radiation through submillimeter-diameter circular waveguides,“ Opt. Lett. 24, 1431–1433 (1999).
[CrossRef]

Hagmann, M.J.

K. Alonso and M.J. Hagmann, “Comparison of three different methods for coupling of microwave and terahertz signals generated by resonant laser-assisted field emission,” J. Vac. Sci. Technol. B 19, 68–71 (2001).
[CrossRef]

Han, H.

H. Han, H. Park, M. Cho, and J. Kim, “Terahertz pulse propagation in a plastic photonic crystal fiber,“ Appl. Phys. Lett. 80, 2634–2636 (2002).
[CrossRef]

Harrington, J. A.

Jahns, J.

Jamison, S. P

S. P Jamison, R. W. McGowan, and D. Grischkowsky, “Single-mode waveguide propagation and reshaping of sub-ps terahertz pulses in sapphire fiber,“ Appl. Phys. Lett. 76, 1987–1989 (2000).
[CrossRef]

Jamison, S. P.

Jeon, T.-I.

T.-I. Jeon, J. Zhang, and D. Grischkowsky, “THz Sommerfeld wave propagation on a single metal wire,” Appl. Phys. Lett. 86, 161904/1-3 (2005).
[CrossRef]

Kavanagh, K.L.

R. Gordon, A.G. Brolo, A. McKinnon, A. Rajora, B. Leatham, and K.L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett. 92, 037401 (2004).
[CrossRef] [PubMed]

Kim, J.

H. Han, H. Park, M. Cho, and J. Kim, “Terahertz pulse propagation in a plastic photonic crystal fiber,“ Appl. Phys. Lett. 80, 2634–2636 (2002).
[CrossRef]

Leatham, B.

R. Gordon, A.G. Brolo, A. McKinnon, A. Rajora, B. Leatham, and K.L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett. 92, 037401 (2004).
[CrossRef] [PubMed]

Linke, R.A.

H. Cao, R.A. Linke, and A. Nahata, “Broadband generation of terahertz radiation in a waveguide,” Appl. Phys. Lett. 29, 1751–1753 (2004).

McGowan, R. W.

McKinnon, A.

R. Gordon, A.G. Brolo, A. McKinnon, A. Rajora, B. Leatham, and K.L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett. 92, 037401 (2004).
[CrossRef] [PubMed]

Mendis, R.

R. Mendis and D. Grischkowsky, “Undistorted guided-wave propagation of subpicosecond terahertz pulses,“ Opt. Lett. 26, 846–848 (2001).
[CrossRef]

R. Mendis and D. Grischkowsky, “Plastic ribbon THz waveguides,“ J. Appl. Phys. 88, 4449–4451 (2000).
[CrossRef]

Mittleman, D. M.

K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,“ Nature 432, 376–379 (2004).
[CrossRef] [PubMed]

Mueller, E.

Nahata, A.

A. Agrawal, H. Cao, and A. Nahata, “Time-domain analysis of enhanced transmission through a single subwavelength aperture,“ Opt. Express 13, 3535–3542 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-9-3535.
[CrossRef] [PubMed]

H. Cao, A. Agrawal, and A. Nahata, “Controlling the transmission resonance lineshape of a single subwavelength aperture,“ Opt. Express 13, 763–769 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-3-763.
[CrossRef] [PubMed]

H. Cao, R.A. Linke, and A. Nahata, “Broadband generation of terahertz radiation in a waveguide,” Appl. Phys. Lett. 29, 1751–1753 (2004).

A. Agrawal, H. Cao, and A. Nahata, “Excitation and scattering of surface plasmon-polaritons on structured metal films and their application to pulse shaping and enhanced transmission,“ New J. Phys. (submitted).

Ono, S.

M. Goto, A. Quema, H. Takahashi, S. Ono, and N. Sarukura, “Teflon photonic crystal fiber as terahertz waveguide,“ Jpn. J. Appl. Phys. 43, L317–L319 (2004).
[CrossRef]

Park, H.

H. Han, H. Park, M. Cho, and J. Kim, “Terahertz pulse propagation in a plastic photonic crystal fiber,“ Appl. Phys. Lett. 80, 2634–2636 (2002).
[CrossRef]

Pedersen, P.

Quema, A.

M. Goto, A. Quema, H. Takahashi, S. Ono, and N. Sarukura, “Teflon photonic crystal fiber as terahertz waveguide,“ Jpn. J. Appl. Phys. 43, L317–L319 (2004).
[CrossRef]

Rajora, A.

R. Gordon, A.G. Brolo, A. McKinnon, A. Rajora, B. Leatham, and K.L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett. 92, 037401 (2004).
[CrossRef] [PubMed]

Sarukura, N.

M. Goto, A. Quema, H. Takahashi, S. Ono, and N. Sarukura, “Teflon photonic crystal fiber as terahertz waveguide,“ Jpn. J. Appl. Phys. 43, L317–L319 (2004).
[CrossRef]

Sobel, F.

F. Sobel, F.L. Wentworth, and J.C. Wiltse, “Quasi-optical surface waveguide and other components for the 100- to 300-Gc region,” IRE Trans. Microwave Theory Tech. 9, 512–518 (1961).
[CrossRef]

Sommerfeld, A.

A. Sommerfeld, Electrodynamics (Academic, New York, 1952), pp. 177–190.

Takahashi, H.

M. Goto, A. Quema, H. Takahashi, S. Ono, and N. Sarukura, “Teflon photonic crystal fiber as terahertz waveguide,“ Jpn. J. Appl. Phys. 43, L317–L319 (2004).
[CrossRef]

Wang, K.

K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,“ Nature 432, 376–379 (2004).
[CrossRef] [PubMed]

Wentworth, F.L.

F. Sobel, F.L. Wentworth, and J.C. Wiltse, “Quasi-optical surface waveguide and other components for the 100- to 300-Gc region,” IRE Trans. Microwave Theory Tech. 9, 512–518 (1961).
[CrossRef]

Wiltse, J.C.

F. Sobel, F.L. Wentworth, and J.C. Wiltse, “Quasi-optical surface waveguide and other components for the 100- to 300-Gc region,” IRE Trans. Microwave Theory Tech. 9, 512–518 (1961).
[CrossRef]

Zhang, J.

T.-I. Jeon, J. Zhang, and D. Grischkowsky, “THz Sommerfeld wave propagation on a single metal wire,” Appl. Phys. Lett. 86, 161904/1-3 (2005).
[CrossRef]

Appl. Phys. Lett. (6)

S. P Jamison, R. W. McGowan, and D. Grischkowsky, “Single-mode waveguide propagation and reshaping of sub-ps terahertz pulses in sapphire fiber,“ Appl. Phys. Lett. 76, 1987–1989 (2000).
[CrossRef]

S. Coleman and D. Grischkowsky, “A THz transverse electromagnetic mode two dimensional interconnect layer incorporating quasi-optics,“ Appl. Phys. Lett. 83, 3656–3658 (2003).
[CrossRef]

S. Coleman and D. Grischkowsky, “Parallel plate THz transmitter,“ Appl. Phys. Lett. 84, 654 (2004).
[CrossRef]

H. Cao, R.A. Linke, and A. Nahata, “Broadband generation of terahertz radiation in a waveguide,” Appl. Phys. Lett. 29, 1751–1753 (2004).

H. Han, H. Park, M. Cho, and J. Kim, “Terahertz pulse propagation in a plastic photonic crystal fiber,“ Appl. Phys. Lett. 80, 2634–2636 (2002).
[CrossRef]

T.-I. Jeon, J. Zhang, and D. Grischkowsky, “THz Sommerfeld wave propagation on a single metal wire,” Appl. Phys. Lett. 86, 161904/1-3 (2005).
[CrossRef]

IRE Trans. Microwave Theory Tech. (1)

F. Sobel, F.L. Wentworth, and J.C. Wiltse, “Quasi-optical surface waveguide and other components for the 100- to 300-Gc region,” IRE Trans. Microwave Theory Tech. 9, 512–518 (1961).
[CrossRef]

J. Appl. Phys. (2)

G. Goubau, “Surface waves and their application to transmission lines,“ J. Appl. Phys. 21, 1119–1128 (1950).
[CrossRef]

R. Mendis and D. Grischkowsky, “Plastic ribbon THz waveguides,“ J. Appl. Phys. 88, 4449–4451 (2000).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Vac. Sci. Technol. B (1)

K. Alonso and M.J. Hagmann, “Comparison of three different methods for coupling of microwave and terahertz signals generated by resonant laser-assisted field emission,” J. Vac. Sci. Technol. B 19, 68–71 (2001).
[CrossRef]

Jpn. J. Appl. Phys. (1)

M. Goto, A. Quema, H. Takahashi, S. Ono, and N. Sarukura, “Teflon photonic crystal fiber as terahertz waveguide,“ Jpn. J. Appl. Phys. 43, L317–L319 (2004).
[CrossRef]

Nature (1)

K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,“ Nature 432, 376–379 (2004).
[CrossRef] [PubMed]

Opt. Express (4)

Opt. Lett. (2)

Phys. Rev. Lett. (1)

R. Gordon, A.G. Brolo, A. McKinnon, A. Rajora, B. Leatham, and K.L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett. 92, 037401 (2004).
[CrossRef] [PubMed]

Proc. IRE (1)

G. Goubau, “Single-conductor surface-wave transmission lines,” Proc. IRE 39, 619–623 (1951).
[CrossRef]

Other (3)

A. Sommerfeld, Electrodynamics (Academic, New York, 1952), pp. 177–190.

A. Agrawal, H. Cao, and A. Nahata, “Excitation and scattering of surface plasmon-polaritons on structured metal films and their application to pulse shaping and enhanced transmission,“ New J. Phys. (submitted).

R.E. Collin, Field Theory of Guided Waves (New York: IEEE, 1991).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Properties of the grooves milled into the cylindrical metal wire (a) The relationship between a large area metal film with inscribed linear grooves and a cylindrical wire with circumferentially milled grooves. Using the former sample, with slightly different groove patterns [21,22], we showed that each groove was able to couple the incident THz radiation to a propagating surface wave. By using multiple grooves, multiple oscillations, delayed in time from one another in accordance with the groove separation, would coherently superpose. If we roll the sheet about the axis perpendicular to the groove length, we will have a solid cylindrical metal conductor with circumferentially milled grooves that should allow for coupling of THz radiation. (b) Photograph of a section of the 1 mm diameter stainless steel wire containing 3 milled grooves.

Fig. 2.
Fig. 2.

Schematic diagram of the experimental setup. The emitter was oriented so that the resulting THz radiation was polarized in the plane of the schematic diagram and parallel to the wire length. The fiber-fed photoconductive detector was offset from the center of the wire by approximately 3 mm in order to measure the radially polarized THz electric field. The wire length, from the excitation region to the end (near detector), was approximately 5 cm.

Fig. 3.
Fig. 3.

(a) Measured time-domain waveform of THz pulse incident on the wire. The waveform was measured by replacing the cylindrical lens and wire with the photoconductive detector (b) Corresponding normalized amplitude spectrum.

Fig. 4.
Fig. 4.

(a) Measured time-domain THz waveforms for THz pulses coupled to a 1 mm diameter stainless steel wire with eight grooves (red trace), three grooves (blue traces), one groove (green traces), and no grooves (black trace). Broadband THz radiation is coupled to the wire via multiple periodically spaced grooves. The rectangular cross-section grooves are 500 μm wide and 100 μm deep with a center-to-center spacing of 1 mm. The waveforms have been offset from the origin for clarity (b) Corresponding normalized amplitude spectra using the same color scheme noted above.

Fig. 5.
Fig. 5.

Measured time-domain THz waveforms for THz pulses coupled to a 1 mm diameter stainless steel wire with 3 grooves for two different detection points. The blue trace is the data shown in Fig. 4(a) with the photoconductive detector located 3 mm to one side of the wire center. The black trace corresponds to the observed waveform taken with the detector placed 3 mm to the other side of the wire center. The inversion of the observed waveform with the change in the detector position demonstrates clearly the radial polarization of the wave.

Metrics