Abstract

The enhanced transmission of electromagnetic waves through an opaque object is reported in this paper. The samples are constructed as two different configurations: a subwavelength metallic mesh sandwiched either between two metallic plates with periodic fractal slots (ABA for short) or between two plastic plates with periodic metallic fractals (CBC for short). Such ABA or CBC configuration exhibits multiple transmission peaks, indicating the wave penetrations through the opaque metallic mesh. The experimental observations and theoretical simulations demonstrate that the transmission enhancements for two configurations are induced by local resonances in the sandwiching layers.

©2005 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Induced resonant electromagnetic transmission in almost-shorted dual screens

Harry F. Contopanagos
J. Opt. Soc. Am. B 30(4) 874-883 (2013)

References

  • View by:
  • |
  • |
  • |

  1. V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Sov. Phys. Usp. 10, 509 (1968).
    [Crossref]
  2. J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76, 4773 (1996).
    [Crossref] [PubMed]
  3. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075 (1999).
    [Crossref]
  4. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “A composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184 (2000).
    [Crossref] [PubMed]
  5. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77 (2001).
    [Crossref] [PubMed]
  6. R. A. Shelby, D. R. Smith, S. C. Nemat-Nasser, and S. Schultz, “Microwave transmission through a two-dimensional, isotropic, left-handed metamaterial,” Appl. Phys. Lett. 78, 489 (2001).
    [Crossref]
  7. “Focus Issue: Negative Refraction and Metamaterials,” Opt. Express 11, 639–755 (2003).
    [PubMed]
  8. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through subwavelength hole arrays,” Nature (London) 391, 667 (1998).
    [Crossref]
  9. T. J. Kim, T. Thio, T. W. Ebbesen, D. E. Grupp, and H. J. Lezec, “Control of optical transmission through metals perforated with subwavelength hole arrays,” Opt. Lett. 24, 256 (1999).
    [Crossref]
  10. T. Thio, K. M. Pellerin, R. A. Linke, H. J. Lezec, and T. W. Ebbesen, “Enhanced light transmission through a single subwavelength aperture,” Opt. Lett. 26, 1972 (2001).
    [Crossref]
  11. “Focus Issue: Extraordinary Light Transmission Through Sub-Wavelength Structured Surfaces,” Opt. Express 12, 3618–3893 (2003).
  12. Y. Takakura, “Optical resonance in a narrow slit in a thick metallic screen,” Phys. Rev. Lett. 86, 5601 (2001).
    [Crossref] [PubMed]
  13. H. E. Went, A. P. Hibbins, J. R. Sambles, C. R. Lawrence, and A. P. Crick, “Selective transmission through very deep zero-order metallic gratings at microwave frequencies,” Appl. Phys. Lett. 77, 2789 (2000).
    [Crossref]
  14. L Zhou, W. Wen, C. T. Chan, and P. Sheng, “Electromagnetic-wave tunneling through negative-permittivity media with high magnetic fields,” Phys. Rev. Lett. 94, 243905 (2005).
    [Crossref]
  15. W. Wen, L. Zhou, J. Li, W. Ge, C. T. Chan, and P. Sheng, “Subwavelength photonic band gaps from planar fractals,” Phys. Rev. Lett. 89, 223901 (2002).
    [Crossref] [PubMed]
  16. B. Hou, G. Xu, and W. Wen, “Tunable band gap properties of planar metallic fractals,” J. Appl. Phys. 95, 3231 (2004).
    [Crossref]
  17. W. Wen, Z. Yang, G. Xu, Y. Chen, L. Zhou, W. Ge, C. T. Chan, and P. Sheng, “Infrared passbands from fractal slit patterns on a metal plate,” Appl. Phys. Lett. 83, 2106 (2003).
    [Crossref]
  18. Simulations were performed using the package CONCERTO 3.5, developed by Vector Fields Limited, England, 2004.
  19. B. A. Munk, Frequency Selective Surfaces, Theory and Design (Wiley, New York, 2000).
    [Crossref]

2005 (1)

L Zhou, W. Wen, C. T. Chan, and P. Sheng, “Electromagnetic-wave tunneling through negative-permittivity media with high magnetic fields,” Phys. Rev. Lett. 94, 243905 (2005).
[Crossref]

2004 (1)

B. Hou, G. Xu, and W. Wen, “Tunable band gap properties of planar metallic fractals,” J. Appl. Phys. 95, 3231 (2004).
[Crossref]

2003 (3)

W. Wen, Z. Yang, G. Xu, Y. Chen, L. Zhou, W. Ge, C. T. Chan, and P. Sheng, “Infrared passbands from fractal slit patterns on a metal plate,” Appl. Phys. Lett. 83, 2106 (2003).
[Crossref]

“Focus Issue: Negative Refraction and Metamaterials,” Opt. Express 11, 639–755 (2003).
[PubMed]

“Focus Issue: Extraordinary Light Transmission Through Sub-Wavelength Structured Surfaces,” Opt. Express 12, 3618–3893 (2003).

2002 (1)

W. Wen, L. Zhou, J. Li, W. Ge, C. T. Chan, and P. Sheng, “Subwavelength photonic band gaps from planar fractals,” Phys. Rev. Lett. 89, 223901 (2002).
[Crossref] [PubMed]

2001 (4)

T. Thio, K. M. Pellerin, R. A. Linke, H. J. Lezec, and T. W. Ebbesen, “Enhanced light transmission through a single subwavelength aperture,” Opt. Lett. 26, 1972 (2001).
[Crossref]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77 (2001).
[Crossref] [PubMed]

R. A. Shelby, D. R. Smith, S. C. Nemat-Nasser, and S. Schultz, “Microwave transmission through a two-dimensional, isotropic, left-handed metamaterial,” Appl. Phys. Lett. 78, 489 (2001).
[Crossref]

Y. Takakura, “Optical resonance in a narrow slit in a thick metallic screen,” Phys. Rev. Lett. 86, 5601 (2001).
[Crossref] [PubMed]

2000 (2)

H. E. Went, A. P. Hibbins, J. R. Sambles, C. R. Lawrence, and A. P. Crick, “Selective transmission through very deep zero-order metallic gratings at microwave frequencies,” Appl. Phys. Lett. 77, 2789 (2000).
[Crossref]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “A composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184 (2000).
[Crossref] [PubMed]

1999 (2)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075 (1999).
[Crossref]

T. J. Kim, T. Thio, T. W. Ebbesen, D. E. Grupp, and H. J. Lezec, “Control of optical transmission through metals perforated with subwavelength hole arrays,” Opt. Lett. 24, 256 (1999).
[Crossref]

1998 (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through subwavelength hole arrays,” Nature (London) 391, 667 (1998).
[Crossref]

1996 (1)

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76, 4773 (1996).
[Crossref] [PubMed]

1968 (1)

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Sov. Phys. Usp. 10, 509 (1968).
[Crossref]

Chan, C. T.

L Zhou, W. Wen, C. T. Chan, and P. Sheng, “Electromagnetic-wave tunneling through negative-permittivity media with high magnetic fields,” Phys. Rev. Lett. 94, 243905 (2005).
[Crossref]

W. Wen, Z. Yang, G. Xu, Y. Chen, L. Zhou, W. Ge, C. T. Chan, and P. Sheng, “Infrared passbands from fractal slit patterns on a metal plate,” Appl. Phys. Lett. 83, 2106 (2003).
[Crossref]

W. Wen, L. Zhou, J. Li, W. Ge, C. T. Chan, and P. Sheng, “Subwavelength photonic band gaps from planar fractals,” Phys. Rev. Lett. 89, 223901 (2002).
[Crossref] [PubMed]

Chen, Y.

W. Wen, Z. Yang, G. Xu, Y. Chen, L. Zhou, W. Ge, C. T. Chan, and P. Sheng, “Infrared passbands from fractal slit patterns on a metal plate,” Appl. Phys. Lett. 83, 2106 (2003).
[Crossref]

Crick, A. P.

H. E. Went, A. P. Hibbins, J. R. Sambles, C. R. Lawrence, and A. P. Crick, “Selective transmission through very deep zero-order metallic gratings at microwave frequencies,” Appl. Phys. Lett. 77, 2789 (2000).
[Crossref]

Ebbesen, T. W.

Ge, W.

W. Wen, Z. Yang, G. Xu, Y. Chen, L. Zhou, W. Ge, C. T. Chan, and P. Sheng, “Infrared passbands from fractal slit patterns on a metal plate,” Appl. Phys. Lett. 83, 2106 (2003).
[Crossref]

W. Wen, L. Zhou, J. Li, W. Ge, C. T. Chan, and P. Sheng, “Subwavelength photonic band gaps from planar fractals,” Phys. Rev. Lett. 89, 223901 (2002).
[Crossref] [PubMed]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through subwavelength hole arrays,” Nature (London) 391, 667 (1998).
[Crossref]

Grupp, D. E.

Hibbins, A. P.

H. E. Went, A. P. Hibbins, J. R. Sambles, C. R. Lawrence, and A. P. Crick, “Selective transmission through very deep zero-order metallic gratings at microwave frequencies,” Appl. Phys. Lett. 77, 2789 (2000).
[Crossref]

Holden, A. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075 (1999).
[Crossref]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76, 4773 (1996).
[Crossref] [PubMed]

Hou, B.

B. Hou, G. Xu, and W. Wen, “Tunable band gap properties of planar metallic fractals,” J. Appl. Phys. 95, 3231 (2004).
[Crossref]

Kim, T. J.

Lawrence, C. R.

H. E. Went, A. P. Hibbins, J. R. Sambles, C. R. Lawrence, and A. P. Crick, “Selective transmission through very deep zero-order metallic gratings at microwave frequencies,” Appl. Phys. Lett. 77, 2789 (2000).
[Crossref]

Lezec, H. J.

Li, J.

W. Wen, L. Zhou, J. Li, W. Ge, C. T. Chan, and P. Sheng, “Subwavelength photonic band gaps from planar fractals,” Phys. Rev. Lett. 89, 223901 (2002).
[Crossref] [PubMed]

Linke, R. A.

Munk, B. A.

B. A. Munk, Frequency Selective Surfaces, Theory and Design (Wiley, New York, 2000).
[Crossref]

Nemat-Nasser, S. C.

R. A. Shelby, D. R. Smith, S. C. Nemat-Nasser, and S. Schultz, “Microwave transmission through a two-dimensional, isotropic, left-handed metamaterial,” Appl. Phys. Lett. 78, 489 (2001).
[Crossref]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “A composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184 (2000).
[Crossref] [PubMed]

Padilla, W. J.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “A composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184 (2000).
[Crossref] [PubMed]

Pellerin, K. M.

Pendry, J. B.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075 (1999).
[Crossref]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76, 4773 (1996).
[Crossref] [PubMed]

Robbins, D. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075 (1999).
[Crossref]

Sambles, J. R.

H. E. Went, A. P. Hibbins, J. R. Sambles, C. R. Lawrence, and A. P. Crick, “Selective transmission through very deep zero-order metallic gratings at microwave frequencies,” Appl. Phys. Lett. 77, 2789 (2000).
[Crossref]

Schultz, S.

R. A. Shelby, D. R. Smith, S. C. Nemat-Nasser, and S. Schultz, “Microwave transmission through a two-dimensional, isotropic, left-handed metamaterial,” Appl. Phys. Lett. 78, 489 (2001).
[Crossref]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77 (2001).
[Crossref] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “A composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184 (2000).
[Crossref] [PubMed]

Shelby, R. A.

R. A. Shelby, D. R. Smith, S. C. Nemat-Nasser, and S. Schultz, “Microwave transmission through a two-dimensional, isotropic, left-handed metamaterial,” Appl. Phys. Lett. 78, 489 (2001).
[Crossref]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77 (2001).
[Crossref] [PubMed]

Sheng, P.

L Zhou, W. Wen, C. T. Chan, and P. Sheng, “Electromagnetic-wave tunneling through negative-permittivity media with high magnetic fields,” Phys. Rev. Lett. 94, 243905 (2005).
[Crossref]

W. Wen, Z. Yang, G. Xu, Y. Chen, L. Zhou, W. Ge, C. T. Chan, and P. Sheng, “Infrared passbands from fractal slit patterns on a metal plate,” Appl. Phys. Lett. 83, 2106 (2003).
[Crossref]

W. Wen, L. Zhou, J. Li, W. Ge, C. T. Chan, and P. Sheng, “Subwavelength photonic band gaps from planar fractals,” Phys. Rev. Lett. 89, 223901 (2002).
[Crossref] [PubMed]

Smith, D. R.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77 (2001).
[Crossref] [PubMed]

R. A. Shelby, D. R. Smith, S. C. Nemat-Nasser, and S. Schultz, “Microwave transmission through a two-dimensional, isotropic, left-handed metamaterial,” Appl. Phys. Lett. 78, 489 (2001).
[Crossref]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “A composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184 (2000).
[Crossref] [PubMed]

Stewart, W. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075 (1999).
[Crossref]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76, 4773 (1996).
[Crossref] [PubMed]

Takakura, Y.

Y. Takakura, “Optical resonance in a narrow slit in a thick metallic screen,” Phys. Rev. Lett. 86, 5601 (2001).
[Crossref] [PubMed]

Thio, T.

Veselago, V. G.

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Sov. Phys. Usp. 10, 509 (1968).
[Crossref]

Vier, D. C.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “A composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184 (2000).
[Crossref] [PubMed]

Wen, W.

L Zhou, W. Wen, C. T. Chan, and P. Sheng, “Electromagnetic-wave tunneling through negative-permittivity media with high magnetic fields,” Phys. Rev. Lett. 94, 243905 (2005).
[Crossref]

B. Hou, G. Xu, and W. Wen, “Tunable band gap properties of planar metallic fractals,” J. Appl. Phys. 95, 3231 (2004).
[Crossref]

W. Wen, Z. Yang, G. Xu, Y. Chen, L. Zhou, W. Ge, C. T. Chan, and P. Sheng, “Infrared passbands from fractal slit patterns on a metal plate,” Appl. Phys. Lett. 83, 2106 (2003).
[Crossref]

W. Wen, L. Zhou, J. Li, W. Ge, C. T. Chan, and P. Sheng, “Subwavelength photonic band gaps from planar fractals,” Phys. Rev. Lett. 89, 223901 (2002).
[Crossref] [PubMed]

Went, H. E.

H. E. Went, A. P. Hibbins, J. R. Sambles, C. R. Lawrence, and A. P. Crick, “Selective transmission through very deep zero-order metallic gratings at microwave frequencies,” Appl. Phys. Lett. 77, 2789 (2000).
[Crossref]

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through subwavelength hole arrays,” Nature (London) 391, 667 (1998).
[Crossref]

Xu, G.

B. Hou, G. Xu, and W. Wen, “Tunable band gap properties of planar metallic fractals,” J. Appl. Phys. 95, 3231 (2004).
[Crossref]

W. Wen, Z. Yang, G. Xu, Y. Chen, L. Zhou, W. Ge, C. T. Chan, and P. Sheng, “Infrared passbands from fractal slit patterns on a metal plate,” Appl. Phys. Lett. 83, 2106 (2003).
[Crossref]

Yang, Z.

W. Wen, Z. Yang, G. Xu, Y. Chen, L. Zhou, W. Ge, C. T. Chan, and P. Sheng, “Infrared passbands from fractal slit patterns on a metal plate,” Appl. Phys. Lett. 83, 2106 (2003).
[Crossref]

Youngs, I.

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76, 4773 (1996).
[Crossref] [PubMed]

Zhou, L

L Zhou, W. Wen, C. T. Chan, and P. Sheng, “Electromagnetic-wave tunneling through negative-permittivity media with high magnetic fields,” Phys. Rev. Lett. 94, 243905 (2005).
[Crossref]

Zhou, L.

W. Wen, Z. Yang, G. Xu, Y. Chen, L. Zhou, W. Ge, C. T. Chan, and P. Sheng, “Infrared passbands from fractal slit patterns on a metal plate,” Appl. Phys. Lett. 83, 2106 (2003).
[Crossref]

W. Wen, L. Zhou, J. Li, W. Ge, C. T. Chan, and P. Sheng, “Subwavelength photonic band gaps from planar fractals,” Phys. Rev. Lett. 89, 223901 (2002).
[Crossref] [PubMed]

Appl. Phys. Lett. (3)

R. A. Shelby, D. R. Smith, S. C. Nemat-Nasser, and S. Schultz, “Microwave transmission through a two-dimensional, isotropic, left-handed metamaterial,” Appl. Phys. Lett. 78, 489 (2001).
[Crossref]

H. E. Went, A. P. Hibbins, J. R. Sambles, C. R. Lawrence, and A. P. Crick, “Selective transmission through very deep zero-order metallic gratings at microwave frequencies,” Appl. Phys. Lett. 77, 2789 (2000).
[Crossref]

W. Wen, Z. Yang, G. Xu, Y. Chen, L. Zhou, W. Ge, C. T. Chan, and P. Sheng, “Infrared passbands from fractal slit patterns on a metal plate,” Appl. Phys. Lett. 83, 2106 (2003).
[Crossref]

IEEE Trans. Microwave Theory Tech. (1)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075 (1999).
[Crossref]

J. Appl. Phys. (1)

B. Hou, G. Xu, and W. Wen, “Tunable band gap properties of planar metallic fractals,” J. Appl. Phys. 95, 3231 (2004).
[Crossref]

Nature (London) (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through subwavelength hole arrays,” Nature (London) 391, 667 (1998).
[Crossref]

Opt. Express (2)

Opt. Lett. (2)

Phys. Rev. Lett. (5)

Y. Takakura, “Optical resonance in a narrow slit in a thick metallic screen,” Phys. Rev. Lett. 86, 5601 (2001).
[Crossref] [PubMed]

L Zhou, W. Wen, C. T. Chan, and P. Sheng, “Electromagnetic-wave tunneling through negative-permittivity media with high magnetic fields,” Phys. Rev. Lett. 94, 243905 (2005).
[Crossref]

W. Wen, L. Zhou, J. Li, W. Ge, C. T. Chan, and P. Sheng, “Subwavelength photonic band gaps from planar fractals,” Phys. Rev. Lett. 89, 223901 (2002).
[Crossref] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “A composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184 (2000).
[Crossref] [PubMed]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76, 4773 (1996).
[Crossref] [PubMed]

Science (1)

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77 (2001).
[Crossref] [PubMed]

Sov. Phys. Usp. (1)

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Sov. Phys. Usp. 10, 509 (1968).
[Crossref]

Other (2)

Simulations were performed using the package CONCERTO 3.5, developed by Vector Fields Limited, England, 2004.

B. A. Munk, Frequency Selective Surfaces, Theory and Design (Wiley, New York, 2000).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

The schematic picture of the sample. A 6-level planar fractal pattern is illustrated in the top right corner. The planar fractal pattern is periodically replicated in the xy plane with the first level line along the y direction.

Fig. 2.
Fig. 2.

The normal transmission spectra of the layer A and B and the combining layer ABA measured under two polarizations ((a) for y-polarization and (b) for x-polarization). The vertical dot lines denote the corresponding of the transmission peaks of ABA to the pass bands of layer A.

Fig. 3.
Fig. 3.

The normal transmission spectra of the layer C and B and the combining layer CBC measured under two polarizations ((a) for y-polarization and (b) for x-polarization). The vertical dot lines denote the corresponding of the transmission peaks of CBC to the stop bands of layer C.

Fig. 4.
Fig. 4.

The measured (open symbols) and simulated (solid lines) normal transmissions of the individual layers and the composite layers for the simplified fractal—‘H’.

Metrics