Abstract

The enhanced transmission of electromagnetic waves through an opaque object is reported in this paper. The samples are constructed as two different configurations: a subwavelength metallic mesh sandwiched either between two metallic plates with periodic fractal slots (ABA for short) or between two plastic plates with periodic metallic fractals (CBC for short). Such ABA or CBC configuration exhibits multiple transmission peaks, indicating the wave penetrations through the opaque metallic mesh. The experimental observations and theoretical simulations demonstrate that the transmission enhancements for two configurations are induced by local resonances in the sandwiching layers.

© 2005 Optical Society of America

PDF Article

References

  • View by:
  • |

  1. V. G. Veselago, �??The electrodynamics of substances with simultaneously negative values of ε and μ,�?? Sov. Phys. Usp. 10, 509 (1968).
    [CrossRef]
  2. J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, �??Extremely low frequency plasmons in metallic mesostructures,�?? Phys. Rev. Lett. 76, 4773 (1996).
    [CrossRef]
  3. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, �??Magnetism from conductors and enhanced nonlinear phenomena,�?? IEEE Trans. Microwave Theory Tech. 47, 2075 (1999).
  4. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, �??A composite medium with simultaneously negative permeability and permittivity,�?? Phys. Rev. Lett. 84, 4184 (2000).
    [CrossRef]
  5. R. A. Shelby, D. R. Smith, and S. Schultz, �??Experimental verification of a negative index of refraction,�?? Science 292, 77 (2001).
    [CrossRef]
  6. R. A. Shelby, D. R. Smith, S. C. Nemat-Nasser, and S. Schultz, �??Microwave transmission through a two-dimensional, isotropic, left-handed metamaterial,�?? Appl. Phys. Lett. 78, 489 (2001).
    [CrossRef]
  7. �??Focus Issue: Negative Refraction and Metamaterials,�?? Opt. Express 11, 639-755 (2003).
  8. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, �??Extraordinary optical transmission through subwavelength hole arrays,�?? Nature (London) 391, 667 (1998).
    [CrossRef]
  9. T. J. Kim, T. Thio, T. W. Ebbesen, D. E. Grupp, and H. J. Lezec, �??Control of optical transmission through metals perforated with subwavelength hole arrays,�?? Opt. Lett. 24, 256 (1999).
  10. T. Thio, K. M. Pellerin, R. A. Linke, H. J. Lezec, and T. W. Ebbesen, �??Enhanced light transmission through a single subwavelength aperture,�?? Opt. Lett. 26, 1972 (2001).
  11. �??Focus Issue: Extraordinary Light Transmission Through Sub-Wavelength Structured Surfaces,�?? Opt. Express 12, 3618-3893 (2003).
    [CrossRef]
  12. Y. Takakura, �??Optical resonance in a narrow slit in a thick metallic screen,�?? Phys. Rev. Lett. 86, 5601 (2001).
    [CrossRef]
  13. H. E. Went, A. P. Hibbins, J. R. Sambles, C. R. Lawrence, and A. P. Crick, �??Selective transmission through very deep zero-order metallic gratings at microwave frequencies,�?? Appl. Phys. Lett. 77, 2789 (2000).
    [CrossRef]
  14. L. Zhou, W. Wen, C. T. Chan, and P. Sheng, �??Electromagnetic-wave tunneling through negative-permittivity media with high magnetic fields,�?? Phys. Rev. Lett. 94, 243905 (2005).
    [CrossRef]
  15. W. Wen, L. Zhou, J. Li, W. Ge, C. T. Chan, and P. Sheng, �??Subwavelength photonic band gaps from planar fractals,�?? Phys. Rev. Lett. 89, 223901 (2002).
    [CrossRef]
  16. B. Hou, G. Xu, and W. Wen, �??Tunable band gap properties of planar metallic fractals,�?? J. Appl. Phys. 95, 3231 (2004).
    [CrossRef]
  17. W. Wen, Z. Yang, G. Xu, Y. Chen, L. Zhou, W. Ge, C. T. Chan, and P. Sheng, �??Infrared passbands from fractal slit patterns on a metal plate,�?? Appl. Phys. Lett. 83, 2106 (2003).
    [CrossRef]
  18. Simulations were performed using the package CONCERTO 3.5, developed by Vector Fields Limited, England, 2004.
  19. B. A. Munk, Frequency Selective Surfaces, Theory and Design (Wiley, New York, 2000).

Appl. Phys. Lett. (3)

R. A. Shelby, D. R. Smith, S. C. Nemat-Nasser, and S. Schultz, �??Microwave transmission through a two-dimensional, isotropic, left-handed metamaterial,�?? Appl. Phys. Lett. 78, 489 (2001).
[CrossRef]

H. E. Went, A. P. Hibbins, J. R. Sambles, C. R. Lawrence, and A. P. Crick, �??Selective transmission through very deep zero-order metallic gratings at microwave frequencies,�?? Appl. Phys. Lett. 77, 2789 (2000).
[CrossRef]

W. Wen, Z. Yang, G. Xu, Y. Chen, L. Zhou, W. Ge, C. T. Chan, and P. Sheng, �??Infrared passbands from fractal slit patterns on a metal plate,�?? Appl. Phys. Lett. 83, 2106 (2003).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (1)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, �??Magnetism from conductors and enhanced nonlinear phenomena,�?? IEEE Trans. Microwave Theory Tech. 47, 2075 (1999).

J. Appl. Phys. (1)

B. Hou, G. Xu, and W. Wen, �??Tunable band gap properties of planar metallic fractals,�?? J. Appl. Phys. 95, 3231 (2004).
[CrossRef]

Nature (London) (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, �??Extraordinary optical transmission through subwavelength hole arrays,�?? Nature (London) 391, 667 (1998).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Phys. Rev. Lett. (5)

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, �??A composite medium with simultaneously negative permeability and permittivity,�?? Phys. Rev. Lett. 84, 4184 (2000).
[CrossRef]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, �??Extremely low frequency plasmons in metallic mesostructures,�?? Phys. Rev. Lett. 76, 4773 (1996).
[CrossRef]

Y. Takakura, �??Optical resonance in a narrow slit in a thick metallic screen,�?? Phys. Rev. Lett. 86, 5601 (2001).
[CrossRef]

L. Zhou, W. Wen, C. T. Chan, and P. Sheng, �??Electromagnetic-wave tunneling through negative-permittivity media with high magnetic fields,�?? Phys. Rev. Lett. 94, 243905 (2005).
[CrossRef]

W. Wen, L. Zhou, J. Li, W. Ge, C. T. Chan, and P. Sheng, �??Subwavelength photonic band gaps from planar fractals,�?? Phys. Rev. Lett. 89, 223901 (2002).
[CrossRef]

Science (1)

R. A. Shelby, D. R. Smith, and S. Schultz, �??Experimental verification of a negative index of refraction,�?? Science 292, 77 (2001).
[CrossRef]

Sov. Phys. Usp. (1)

V. G. Veselago, �??The electrodynamics of substances with simultaneously negative values of ε and μ,�?? Sov. Phys. Usp. 10, 509 (1968).
[CrossRef]

Other (2)

Simulations were performed using the package CONCERTO 3.5, developed by Vector Fields Limited, England, 2004.

B. A. Munk, Frequency Selective Surfaces, Theory and Design (Wiley, New York, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics