Abstract

In this paper, based on numerical study using Finite Difference Time Domain method, we discuss two possible illumination schemes utilizing surface plasmon effects to achieve high density sub-100 nm scale photolithography by using ultraviolet light from a mercury lamp. In the illumination schemes discussed in this paper, a thin film layer, named as shield layer, is placed in between a photoresist layer and a silicon substrate. In the first scheme, the shield material is titanium. Simulations show that the surface plasmons excited on both the metallic mask and the titanium shield enable the transfer of high density nanoscale pattern using mercury lamp emission. In the second scheme, a silicon dioxide layer is used instead of the titanium to avoid possible metal contamination. The two schemes discussed in this paper offer convenient, low cost, and massive pattern transfer methods by simple adjustment to the traditional photolithography method.

© 2005 Optical Society of America

PDF Article

References

  • View by:
  • |

  1. S. Okazaki, �??Resolution limits of optical lithography,�?? J. Vac. Sci. Technol. B 9, 2829-2833 (1991).
    [CrossRef]
  2. R. Kunz, M. Rothschild and M. S. Yeung, �??Large-area patterning of ~50 nm structures on flexible substrates using near-field 193 nm radiation,�?? J. Vac. Sci. Technol. B 21, 78 (2003).
    [CrossRef]
  3. J. G. Goodberlet and H. Kavak, �??Patterning Sub-50 nm features with near-field embedded-amplitude masks,�?? Appl. Phys. Lett. 81, 1315 (2002).
    [CrossRef]
  4. H. Schmid, H. Biebuyck, B. Michel and O. J. F. Martin, �??Light-coupling masks for lensless, sub-wavelength optical lithography,�?? Appl. Phys. Lett. 72, 2379 (1998).
    [CrossRef]
  5. M. M. Alkaisi, R. J. Blaikie, S. J. McNab, R. Cheung, and D. R. S. Cummingb, �??Sub-diffraction-limited patterning using evanescent near-field optical lithography,�?? Appl. Phys. Lett. 75, 3560 (1999).
    [CrossRef]
  6. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, �??Extraordinary optical transmission through sub-wavelength hole arrays,�?? Nature (London) 391, 667-669 (1999).
    [CrossRef]
  7. L. Salomon, F. Grillot, A. V. Zayats and F. de Fornel, �??Near-field distribution of optical transmission of periodic subwavelength holes in a metal film,�?? Phys. Rev. Lett. 86, 1110 (2001).
    [CrossRef]
  8. D. E. Grupp, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin and T. Thio, �??Crucial role of metal surface in enhanced transmission through subwavelength apertures,�?? Appl. Phys. Lett. 77, 1569 (2000).
    [CrossRef]
  9. H. Raether, �??Surface Plasmons on Smooth and Rough Surfaces and on Gratings,�?? Berlin, 1988.
  10. J. B. Pendry, �??Playing tricks with light,�?? Science 285, 1687-1688 (2002).
    [CrossRef]
  11. E. Popov, M. Nevière, S. Enoch, and R. Reinisch, �??Theory of light transmission through subwavelength periodic hole arrays,�?? Phys. Rev. B. 62 16100 (2000).
    [CrossRef]
  12. W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, �??Surface Plasmonic Lithography,�?? Nano Lett. 4, 1085 (2004).
    [CrossRef]
  13. X. Luo, T. Ishihara, �??Surface plasmon resonant interference nanolithography technique,�?? Appl. Phys. Lett. 84, 4780 (2004).
    [CrossRef]
  14. J. B. Pendry, �??Negative refraction makes a perfect lens,�?? Phys. Rev. Lett. 85, 3966 (2000).
    [CrossRef]
  15. D.B. Shao, S.C. Chen, �??Surface-Plasmon-Assisted Nanoscale Photolithography by Polarized Light,�?? Appl. Phys. Lett. 86, 253107 (2005).
    [CrossRef]
  16. K. S. Yee, �??Numerical solution of initial boundary value problems involving Maxwell�??s equations in isotropic media,�?? IEEE Trans. Antennas Propag. 14, 302, May 1966.
    [CrossRef]
  17. J. P. Berenger, �??A Perfectly Matched Layer for the Absorption of Electromagnetic Waves,�?? J. Comput. Phys. 114, 185 (1994).
    [CrossRef]
  18. S. K. Gray and T. Kupka, �??Propagation of light in metallic nanowire arrays: Finite-difference time-domain studies of silver cylinders,�?? Phys. Rev. B 68, 045415 (2003).
    [CrossRef]
  19. E. D. Palik, �??Handbook of optical constants of solids,�?? Academic Press, Orlando, 1985.
  20. P. W. Barber, S. C. Hill, �??Light Scattering by Particles: Computational Methods,�?? World Scientific, Singapore, 1990.
  21. J. T. Krug II, E. J. Sánchez, and X. S. Xie, �??Design of Near-field Optical Probes with Optimal Field Enhancement by Finite Difference Time Domain Electromagnetic Simulation,�?? J. Chem. Phys. 116, 10895 (2002).
    [CrossRef]

Appl. Phys. Lett. (6)

J. G. Goodberlet and H. Kavak, �??Patterning Sub-50 nm features with near-field embedded-amplitude masks,�?? Appl. Phys. Lett. 81, 1315 (2002).
[CrossRef]

H. Schmid, H. Biebuyck, B. Michel and O. J. F. Martin, �??Light-coupling masks for lensless, sub-wavelength optical lithography,�?? Appl. Phys. Lett. 72, 2379 (1998).
[CrossRef]

M. M. Alkaisi, R. J. Blaikie, S. J. McNab, R. Cheung, and D. R. S. Cummingb, �??Sub-diffraction-limited patterning using evanescent near-field optical lithography,�?? Appl. Phys. Lett. 75, 3560 (1999).
[CrossRef]

D. E. Grupp, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin and T. Thio, �??Crucial role of metal surface in enhanced transmission through subwavelength apertures,�?? Appl. Phys. Lett. 77, 1569 (2000).
[CrossRef]

X. Luo, T. Ishihara, �??Surface plasmon resonant interference nanolithography technique,�?? Appl. Phys. Lett. 84, 4780 (2004).
[CrossRef]

D.B. Shao, S.C. Chen, �??Surface-Plasmon-Assisted Nanoscale Photolithography by Polarized Light,�?? Appl. Phys. Lett. 86, 253107 (2005).
[CrossRef]

IEEE Trans. Antennas Propag. (1)

K. S. Yee, �??Numerical solution of initial boundary value problems involving Maxwell�??s equations in isotropic media,�?? IEEE Trans. Antennas Propag. 14, 302, May 1966.
[CrossRef]

J. Chem. Phys. (1)

J. T. Krug II, E. J. Sánchez, and X. S. Xie, �??Design of Near-field Optical Probes with Optimal Field Enhancement by Finite Difference Time Domain Electromagnetic Simulation,�?? J. Chem. Phys. 116, 10895 (2002).
[CrossRef]

J. Comput. Phys. (1)

J. P. Berenger, �??A Perfectly Matched Layer for the Absorption of Electromagnetic Waves,�?? J. Comput. Phys. 114, 185 (1994).
[CrossRef]

J. Vac. Sci. Technol. B (2)

S. Okazaki, �??Resolution limits of optical lithography,�?? J. Vac. Sci. Technol. B 9, 2829-2833 (1991).
[CrossRef]

R. Kunz, M. Rothschild and M. S. Yeung, �??Large-area patterning of ~50 nm structures on flexible substrates using near-field 193 nm radiation,�?? J. Vac. Sci. Technol. B 21, 78 (2003).
[CrossRef]

Nano Lett. (1)

W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, �??Surface Plasmonic Lithography,�?? Nano Lett. 4, 1085 (2004).
[CrossRef]

Nature (London) (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, �??Extraordinary optical transmission through sub-wavelength hole arrays,�?? Nature (London) 391, 667-669 (1999).
[CrossRef]

Phys. Rev. B (2)

S. K. Gray and T. Kupka, �??Propagation of light in metallic nanowire arrays: Finite-difference time-domain studies of silver cylinders,�?? Phys. Rev. B 68, 045415 (2003).
[CrossRef]

E. Popov, M. Nevière, S. Enoch, and R. Reinisch, �??Theory of light transmission through subwavelength periodic hole arrays,�?? Phys. Rev. B. 62 16100 (2000).
[CrossRef]

Phys. Rev. Lett. (2)

J. B. Pendry, �??Negative refraction makes a perfect lens,�?? Phys. Rev. Lett. 85, 3966 (2000).
[CrossRef]

L. Salomon, F. Grillot, A. V. Zayats and F. de Fornel, �??Near-field distribution of optical transmission of periodic subwavelength holes in a metal film,�?? Phys. Rev. Lett. 86, 1110 (2001).
[CrossRef]

Science (1)

J. B. Pendry, �??Playing tricks with light,�?? Science 285, 1687-1688 (2002).
[CrossRef]

Other (3)

E. D. Palik, �??Handbook of optical constants of solids,�?? Academic Press, Orlando, 1985.

P. W. Barber, S. C. Hill, �??Light Scattering by Particles: Computational Methods,�?? World Scientific, Singapore, 1990.

H. Raether, �??Surface Plasmons on Smooth and Rough Surfaces and on Gratings,�?? Berlin, 1988.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics