Abstract

In this paper, based on numerical study using Finite Difference Time Domain method, we discuss two possible illumination schemes utilizing surface plasmon effects to achieve high density sub-100 nm scale photolithography by using ultraviolet light from a mercury lamp. In the illumination schemes discussed in this paper, a thin film layer, named as shield layer, is placed in between a photoresist layer and a silicon substrate. In the first scheme, the shield material is titanium. Simulations show that the surface plasmons excited on both the metallic mask and the titanium shield enable the transfer of high density nanoscale pattern using mercury lamp emission. In the second scheme, a silicon dioxide layer is used instead of the titanium to avoid possible metal contamination. The two schemes discussed in this paper offer convenient, low cost, and massive pattern transfer methods by simple adjustment to the traditional photolithography method.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Okazaki, “Resolution limits of optical lithography,” J. Vac. Sci. Technol. B 9, 2829–2833 (1991).
    [Crossref]
  2. R. Kunz, M. Rothschild, and M. S. Yeung, “Large-area patterning of ~50 nm structures on flexible substrates using near-field 193 nm radiation,” J. Vac. Sci. Technol. B 21, 78 (2003).
    [Crossref]
  3. J. G. Goodberlet and H. Kavak, “Patterning Sub-50 nm features with near-field embedded-amplitude masks,” Appl. Phys. Lett. 81, 1315 (2002).
    [Crossref]
  4. H. Schmid, H. Biebuyck, B. Michel, and O. J. F. Martin, “Light-coupling masks for lensless, sub-wavelength optical lithography,” Appl. Phys. Lett. 72, 2379 (1998).
    [Crossref]
  5. M. M. Alkaisi, R. J. Blaikie, S. J. McNab, R. Cheung, and D. R. S. Cummingb, “Sub-diffraction-limited patterning using evanescent near-field optical lithography,” Appl. Phys. Lett. 75, 3560 (1999).
    [Crossref]
  6. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature (London) 391, 667–669 (1999).
    [Crossref]
  7. L. Salomon, F. Grillot, A. V. Zayats, and F. de Fornel, “Near-field distribution of optical transmission of periodic subwavelength holes in a metal film,” Phys. Rev. Lett. 86, 1110 (2001).
    [Crossref] [PubMed]
  8. D. E. Grupp, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, and T. Thio, “Crucial role of metal surface in enhanced transmission through subwavelength apertures,” Appl. Phys. Lett. 77, 1569 (2000).
    [Crossref]
  9. H. Raether, “Surface Plasmons on Smooth and Rough Surfaces and on Gratings,” Berlin, 1988.
  10. J. B. Pendry, “Playing tricks with light,” Science 285, 1687–1688 (2002).
    [Crossref]
  11. E. Popov, M. Nevière, S. Enoch, and R. Reinisch, “Theory of light transmission through subwavelength periodic hole arrays,” Phys. Rev. B. 6216100 (2000).
    [Crossref]
  12. W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, “Surface Plasmonic Lithography,” Nano Lett. 4, 1085 (2004).
    [Crossref]
  13. X. Luo and T. Ishihara, “Surface plasmon resonant interference nanolithography technique,” Appl. Phys. Lett. 84, 4780 (2004).
    [Crossref]
  14. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966 (2000).
    [Crossref] [PubMed]
  15. D.B. Shao and S.C. Chen, “Surface-Plasmon-Assisted Nanoscale Photolithography by Polarized Light,” Appl. Phys. Lett. 86, 253107 (2005).
    [Crossref]
  16. K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propag. 14, 302, May 1966.
    [Crossref]
  17. J. T. Krug II, E. J. Sànchez, and X. S. Xie, “Design of Near-field Optical Probes with Optimal Field Enhancement by Finite Difference Time Domain Electromagnetic Simulation,” J. Chem. Phys. 116, 10895 (2002).
    [Crossref]
  18. J. P. Berenger, “A Perfectly Matched Layer for the Absorption of Electromagnetic Waves,” J. Comput. Phys. 114, 185 (1994).
    [Crossref]
  19. S. K. Gray and T. Kupka, “Propagation of light in metallic nanowire arrays: Finite-difference time-domain studies of silver cylinders,” Phys. Rev. B 68, 045415 (2003).
    [Crossref]
  20. E. D. Palik, “Handbook of optical constants of solids,” Academic Press, Orlando, 1985.
  21. P. W. Barber and S. C. Hill, “Light Scattering by Particles: Computational Methods,” World Scientific, Singapore, 1990.

2005 (1)

D.B. Shao and S.C. Chen, “Surface-Plasmon-Assisted Nanoscale Photolithography by Polarized Light,” Appl. Phys. Lett. 86, 253107 (2005).
[Crossref]

2004 (2)

W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, “Surface Plasmonic Lithography,” Nano Lett. 4, 1085 (2004).
[Crossref]

X. Luo and T. Ishihara, “Surface plasmon resonant interference nanolithography technique,” Appl. Phys. Lett. 84, 4780 (2004).
[Crossref]

2003 (2)

S. K. Gray and T. Kupka, “Propagation of light in metallic nanowire arrays: Finite-difference time-domain studies of silver cylinders,” Phys. Rev. B 68, 045415 (2003).
[Crossref]

R. Kunz, M. Rothschild, and M. S. Yeung, “Large-area patterning of ~50 nm structures on flexible substrates using near-field 193 nm radiation,” J. Vac. Sci. Technol. B 21, 78 (2003).
[Crossref]

2002 (3)

J. G. Goodberlet and H. Kavak, “Patterning Sub-50 nm features with near-field embedded-amplitude masks,” Appl. Phys. Lett. 81, 1315 (2002).
[Crossref]

J. B. Pendry, “Playing tricks with light,” Science 285, 1687–1688 (2002).
[Crossref]

J. T. Krug II, E. J. Sànchez, and X. S. Xie, “Design of Near-field Optical Probes with Optimal Field Enhancement by Finite Difference Time Domain Electromagnetic Simulation,” J. Chem. Phys. 116, 10895 (2002).
[Crossref]

2001 (1)

L. Salomon, F. Grillot, A. V. Zayats, and F. de Fornel, “Near-field distribution of optical transmission of periodic subwavelength holes in a metal film,” Phys. Rev. Lett. 86, 1110 (2001).
[Crossref] [PubMed]

2000 (3)

D. E. Grupp, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, and T. Thio, “Crucial role of metal surface in enhanced transmission through subwavelength apertures,” Appl. Phys. Lett. 77, 1569 (2000).
[Crossref]

E. Popov, M. Nevière, S. Enoch, and R. Reinisch, “Theory of light transmission through subwavelength periodic hole arrays,” Phys. Rev. B. 6216100 (2000).
[Crossref]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966 (2000).
[Crossref] [PubMed]

1999 (2)

M. M. Alkaisi, R. J. Blaikie, S. J. McNab, R. Cheung, and D. R. S. Cummingb, “Sub-diffraction-limited patterning using evanescent near-field optical lithography,” Appl. Phys. Lett. 75, 3560 (1999).
[Crossref]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature (London) 391, 667–669 (1999).
[Crossref]

1998 (1)

H. Schmid, H. Biebuyck, B. Michel, and O. J. F. Martin, “Light-coupling masks for lensless, sub-wavelength optical lithography,” Appl. Phys. Lett. 72, 2379 (1998).
[Crossref]

1994 (1)

J. P. Berenger, “A Perfectly Matched Layer for the Absorption of Electromagnetic Waves,” J. Comput. Phys. 114, 185 (1994).
[Crossref]

1991 (1)

S. Okazaki, “Resolution limits of optical lithography,” J. Vac. Sci. Technol. B 9, 2829–2833 (1991).
[Crossref]

1966 (1)

K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propag. 14, 302, May 1966.
[Crossref]

Alkaisi, M. M.

M. M. Alkaisi, R. J. Blaikie, S. J. McNab, R. Cheung, and D. R. S. Cummingb, “Sub-diffraction-limited patterning using evanescent near-field optical lithography,” Appl. Phys. Lett. 75, 3560 (1999).
[Crossref]

Barber, P. W.

P. W. Barber and S. C. Hill, “Light Scattering by Particles: Computational Methods,” World Scientific, Singapore, 1990.

Berenger, J. P.

J. P. Berenger, “A Perfectly Matched Layer for the Absorption of Electromagnetic Waves,” J. Comput. Phys. 114, 185 (1994).
[Crossref]

Biebuyck, H.

H. Schmid, H. Biebuyck, B. Michel, and O. J. F. Martin, “Light-coupling masks for lensless, sub-wavelength optical lithography,” Appl. Phys. Lett. 72, 2379 (1998).
[Crossref]

Blaikie, R. J.

M. M. Alkaisi, R. J. Blaikie, S. J. McNab, R. Cheung, and D. R. S. Cummingb, “Sub-diffraction-limited patterning using evanescent near-field optical lithography,” Appl. Phys. Lett. 75, 3560 (1999).
[Crossref]

Chen, S.C.

D.B. Shao and S.C. Chen, “Surface-Plasmon-Assisted Nanoscale Photolithography by Polarized Light,” Appl. Phys. Lett. 86, 253107 (2005).
[Crossref]

Cheung, R.

M. M. Alkaisi, R. J. Blaikie, S. J. McNab, R. Cheung, and D. R. S. Cummingb, “Sub-diffraction-limited patterning using evanescent near-field optical lithography,” Appl. Phys. Lett. 75, 3560 (1999).
[Crossref]

Cummingb, D. R. S.

M. M. Alkaisi, R. J. Blaikie, S. J. McNab, R. Cheung, and D. R. S. Cummingb, “Sub-diffraction-limited patterning using evanescent near-field optical lithography,” Appl. Phys. Lett. 75, 3560 (1999).
[Crossref]

de Fornel, F.

L. Salomon, F. Grillot, A. V. Zayats, and F. de Fornel, “Near-field distribution of optical transmission of periodic subwavelength holes in a metal film,” Phys. Rev. Lett. 86, 1110 (2001).
[Crossref] [PubMed]

Ebbesen, T. W.

D. E. Grupp, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, and T. Thio, “Crucial role of metal surface in enhanced transmission through subwavelength apertures,” Appl. Phys. Lett. 77, 1569 (2000).
[Crossref]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature (London) 391, 667–669 (1999).
[Crossref]

Enoch, S.

E. Popov, M. Nevière, S. Enoch, and R. Reinisch, “Theory of light transmission through subwavelength periodic hole arrays,” Phys. Rev. B. 6216100 (2000).
[Crossref]

Fang, N.

W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, “Surface Plasmonic Lithography,” Nano Lett. 4, 1085 (2004).
[Crossref]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature (London) 391, 667–669 (1999).
[Crossref]

Goodberlet, J. G.

J. G. Goodberlet and H. Kavak, “Patterning Sub-50 nm features with near-field embedded-amplitude masks,” Appl. Phys. Lett. 81, 1315 (2002).
[Crossref]

Gray, S. K.

S. K. Gray and T. Kupka, “Propagation of light in metallic nanowire arrays: Finite-difference time-domain studies of silver cylinders,” Phys. Rev. B 68, 045415 (2003).
[Crossref]

Grillot, F.

L. Salomon, F. Grillot, A. V. Zayats, and F. de Fornel, “Near-field distribution of optical transmission of periodic subwavelength holes in a metal film,” Phys. Rev. Lett. 86, 1110 (2001).
[Crossref] [PubMed]

Grupp, D. E.

D. E. Grupp, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, and T. Thio, “Crucial role of metal surface in enhanced transmission through subwavelength apertures,” Appl. Phys. Lett. 77, 1569 (2000).
[Crossref]

Hill, S. C.

P. W. Barber and S. C. Hill, “Light Scattering by Particles: Computational Methods,” World Scientific, Singapore, 1990.

Ishihara, T.

X. Luo and T. Ishihara, “Surface plasmon resonant interference nanolithography technique,” Appl. Phys. Lett. 84, 4780 (2004).
[Crossref]

Kavak, H.

J. G. Goodberlet and H. Kavak, “Patterning Sub-50 nm features with near-field embedded-amplitude masks,” Appl. Phys. Lett. 81, 1315 (2002).
[Crossref]

Krug II, J. T.

J. T. Krug II, E. J. Sànchez, and X. S. Xie, “Design of Near-field Optical Probes with Optimal Field Enhancement by Finite Difference Time Domain Electromagnetic Simulation,” J. Chem. Phys. 116, 10895 (2002).
[Crossref]

Kunz, R.

R. Kunz, M. Rothschild, and M. S. Yeung, “Large-area patterning of ~50 nm structures on flexible substrates using near-field 193 nm radiation,” J. Vac. Sci. Technol. B 21, 78 (2003).
[Crossref]

Kupka, T.

S. K. Gray and T. Kupka, “Propagation of light in metallic nanowire arrays: Finite-difference time-domain studies of silver cylinders,” Phys. Rev. B 68, 045415 (2003).
[Crossref]

Lezec, H. J.

D. E. Grupp, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, and T. Thio, “Crucial role of metal surface in enhanced transmission through subwavelength apertures,” Appl. Phys. Lett. 77, 1569 (2000).
[Crossref]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature (London) 391, 667–669 (1999).
[Crossref]

Luo, Q.

W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, “Surface Plasmonic Lithography,” Nano Lett. 4, 1085 (2004).
[Crossref]

Luo, X.

X. Luo and T. Ishihara, “Surface plasmon resonant interference nanolithography technique,” Appl. Phys. Lett. 84, 4780 (2004).
[Crossref]

Martin, O. J. F.

H. Schmid, H. Biebuyck, B. Michel, and O. J. F. Martin, “Light-coupling masks for lensless, sub-wavelength optical lithography,” Appl. Phys. Lett. 72, 2379 (1998).
[Crossref]

McNab, S. J.

M. M. Alkaisi, R. J. Blaikie, S. J. McNab, R. Cheung, and D. R. S. Cummingb, “Sub-diffraction-limited patterning using evanescent near-field optical lithography,” Appl. Phys. Lett. 75, 3560 (1999).
[Crossref]

Michel, B.

H. Schmid, H. Biebuyck, B. Michel, and O. J. F. Martin, “Light-coupling masks for lensless, sub-wavelength optical lithography,” Appl. Phys. Lett. 72, 2379 (1998).
[Crossref]

Nevière, M.

E. Popov, M. Nevière, S. Enoch, and R. Reinisch, “Theory of light transmission through subwavelength periodic hole arrays,” Phys. Rev. B. 6216100 (2000).
[Crossref]

Okazaki, S.

S. Okazaki, “Resolution limits of optical lithography,” J. Vac. Sci. Technol. B 9, 2829–2833 (1991).
[Crossref]

Palik, E. D.

E. D. Palik, “Handbook of optical constants of solids,” Academic Press, Orlando, 1985.

Pellerin, K. M.

D. E. Grupp, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, and T. Thio, “Crucial role of metal surface in enhanced transmission through subwavelength apertures,” Appl. Phys. Lett. 77, 1569 (2000).
[Crossref]

Pendry, J. B.

J. B. Pendry, “Playing tricks with light,” Science 285, 1687–1688 (2002).
[Crossref]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966 (2000).
[Crossref] [PubMed]

Popov, E.

E. Popov, M. Nevière, S. Enoch, and R. Reinisch, “Theory of light transmission through subwavelength periodic hole arrays,” Phys. Rev. B. 6216100 (2000).
[Crossref]

Raether, H.

H. Raether, “Surface Plasmons on Smooth and Rough Surfaces and on Gratings,” Berlin, 1988.

Reinisch, R.

E. Popov, M. Nevière, S. Enoch, and R. Reinisch, “Theory of light transmission through subwavelength periodic hole arrays,” Phys. Rev. B. 6216100 (2000).
[Crossref]

Rothschild, M.

R. Kunz, M. Rothschild, and M. S. Yeung, “Large-area patterning of ~50 nm structures on flexible substrates using near-field 193 nm radiation,” J. Vac. Sci. Technol. B 21, 78 (2003).
[Crossref]

Salomon, L.

L. Salomon, F. Grillot, A. V. Zayats, and F. de Fornel, “Near-field distribution of optical transmission of periodic subwavelength holes in a metal film,” Phys. Rev. Lett. 86, 1110 (2001).
[Crossref] [PubMed]

Sànchez, E. J.

J. T. Krug II, E. J. Sànchez, and X. S. Xie, “Design of Near-field Optical Probes with Optimal Field Enhancement by Finite Difference Time Domain Electromagnetic Simulation,” J. Chem. Phys. 116, 10895 (2002).
[Crossref]

Schmid, H.

H. Schmid, H. Biebuyck, B. Michel, and O. J. F. Martin, “Light-coupling masks for lensless, sub-wavelength optical lithography,” Appl. Phys. Lett. 72, 2379 (1998).
[Crossref]

Shao, D.B.

D.B. Shao and S.C. Chen, “Surface-Plasmon-Assisted Nanoscale Photolithography by Polarized Light,” Appl. Phys. Lett. 86, 253107 (2005).
[Crossref]

Srituravanich, W.

W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, “Surface Plasmonic Lithography,” Nano Lett. 4, 1085 (2004).
[Crossref]

Sun, C.

W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, “Surface Plasmonic Lithography,” Nano Lett. 4, 1085 (2004).
[Crossref]

Thio, T.

D. E. Grupp, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, and T. Thio, “Crucial role of metal surface in enhanced transmission through subwavelength apertures,” Appl. Phys. Lett. 77, 1569 (2000).
[Crossref]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature (London) 391, 667–669 (1999).
[Crossref]

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature (London) 391, 667–669 (1999).
[Crossref]

Xie, X. S.

J. T. Krug II, E. J. Sànchez, and X. S. Xie, “Design of Near-field Optical Probes with Optimal Field Enhancement by Finite Difference Time Domain Electromagnetic Simulation,” J. Chem. Phys. 116, 10895 (2002).
[Crossref]

Yee, K. S.

K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propag. 14, 302, May 1966.
[Crossref]

Yeung, M. S.

R. Kunz, M. Rothschild, and M. S. Yeung, “Large-area patterning of ~50 nm structures on flexible substrates using near-field 193 nm radiation,” J. Vac. Sci. Technol. B 21, 78 (2003).
[Crossref]

Zayats, A. V.

L. Salomon, F. Grillot, A. V. Zayats, and F. de Fornel, “Near-field distribution of optical transmission of periodic subwavelength holes in a metal film,” Phys. Rev. Lett. 86, 1110 (2001).
[Crossref] [PubMed]

Zhang, X.

W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, “Surface Plasmonic Lithography,” Nano Lett. 4, 1085 (2004).
[Crossref]

Appl. Phys. Lett. (6)

J. G. Goodberlet and H. Kavak, “Patterning Sub-50 nm features with near-field embedded-amplitude masks,” Appl. Phys. Lett. 81, 1315 (2002).
[Crossref]

H. Schmid, H. Biebuyck, B. Michel, and O. J. F. Martin, “Light-coupling masks for lensless, sub-wavelength optical lithography,” Appl. Phys. Lett. 72, 2379 (1998).
[Crossref]

M. M. Alkaisi, R. J. Blaikie, S. J. McNab, R. Cheung, and D. R. S. Cummingb, “Sub-diffraction-limited patterning using evanescent near-field optical lithography,” Appl. Phys. Lett. 75, 3560 (1999).
[Crossref]

D. E. Grupp, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, and T. Thio, “Crucial role of metal surface in enhanced transmission through subwavelength apertures,” Appl. Phys. Lett. 77, 1569 (2000).
[Crossref]

X. Luo and T. Ishihara, “Surface plasmon resonant interference nanolithography technique,” Appl. Phys. Lett. 84, 4780 (2004).
[Crossref]

D.B. Shao and S.C. Chen, “Surface-Plasmon-Assisted Nanoscale Photolithography by Polarized Light,” Appl. Phys. Lett. 86, 253107 (2005).
[Crossref]

IEEE Trans. Antennas Propag. (1)

K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propag. 14, 302, May 1966.
[Crossref]

J. Chem. Phys. (1)

J. T. Krug II, E. J. Sànchez, and X. S. Xie, “Design of Near-field Optical Probes with Optimal Field Enhancement by Finite Difference Time Domain Electromagnetic Simulation,” J. Chem. Phys. 116, 10895 (2002).
[Crossref]

J. Comput. Phys. (1)

J. P. Berenger, “A Perfectly Matched Layer for the Absorption of Electromagnetic Waves,” J. Comput. Phys. 114, 185 (1994).
[Crossref]

J. Vac. Sci. Technol. B (2)

S. Okazaki, “Resolution limits of optical lithography,” J. Vac. Sci. Technol. B 9, 2829–2833 (1991).
[Crossref]

R. Kunz, M. Rothschild, and M. S. Yeung, “Large-area patterning of ~50 nm structures on flexible substrates using near-field 193 nm radiation,” J. Vac. Sci. Technol. B 21, 78 (2003).
[Crossref]

Nano Lett. (1)

W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, “Surface Plasmonic Lithography,” Nano Lett. 4, 1085 (2004).
[Crossref]

Nature (London) (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature (London) 391, 667–669 (1999).
[Crossref]

Phys. Rev. B (1)

S. K. Gray and T. Kupka, “Propagation of light in metallic nanowire arrays: Finite-difference time-domain studies of silver cylinders,” Phys. Rev. B 68, 045415 (2003).
[Crossref]

Phys. Rev. B. (1)

E. Popov, M. Nevière, S. Enoch, and R. Reinisch, “Theory of light transmission through subwavelength periodic hole arrays,” Phys. Rev. B. 6216100 (2000).
[Crossref]

Phys. Rev. Lett. (2)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966 (2000).
[Crossref] [PubMed]

L. Salomon, F. Grillot, A. V. Zayats, and F. de Fornel, “Near-field distribution of optical transmission of periodic subwavelength holes in a metal film,” Phys. Rev. Lett. 86, 1110 (2001).
[Crossref] [PubMed]

Science (1)

J. B. Pendry, “Playing tricks with light,” Science 285, 1687–1688 (2002).
[Crossref]

Other (3)

E. D. Palik, “Handbook of optical constants of solids,” Academic Press, Orlando, 1985.

P. W. Barber and S. C. Hill, “Light Scattering by Particles: Computational Methods,” World Scientific, Singapore, 1990.

H. Raether, “Surface Plasmons on Smooth and Rough Surfaces and on Gratings,” Berlin, 1988.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

A schematic view of the SPAN photolithography illumination setup.

Fig. 2.
Fig. 2.

Comparison of electric field distribution on the axes parallel and perpendicular to the incident light by FDTD simulation and theoretical solution. The incident light wavelength is 365 nm and the cylinder has a diameter of 100 nm.

Fig. 3.
Fig. 3.

Electric field distribution in the photoresist with: (a) a Ti mask and Ti shield, 50 nm aperture, and 60 nm resist thickness, (b) a Ti mask and Ti shield, 20 nm aperture, and 50 nm resist thickness, (c) a Ti mask and bare silicon substrate, 50 nm aperture and 60 nm resist thickness. The dotted line represents intensity contour at ~40% incident light intensity.

Fig. 4.
Fig. 4.

Charge oscillation amplitude distribution with Ti mask and Ti shield.

Fig. 5.
Fig. 5.

Electric field distribution in the photoresist with: (a) Ti mask and SiO2 layer, (b) Cr mask and SiO2 layer. Mask aperture is 50 nm. The silicon dioxide layer has a thickness of 40 nm. The dotted line represents intensity contour at ~40% incident light intensity. The dashed line defines the interface of PMMA and resist, resist and silicon dioxide.

Fig. 6.
Fig. 6.

Electric field plot at different heights within the photoresist with Ti mask and silicon dioxide layer at (a) 354 nm wavelength and (b) 376 nm wavelength.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

ε E x t = H z y σ E x
ε E y t = H z x σ E y
μ H z t = ( E y x E x y ) σ * H z
ε D ( ω ) = ε ω D 2 ω 2 + i Γ D ω
ε eff E x t = H z y J x
ε eff E y t = H z x J y
μ 0 H z t = ( E y x E x y )
J x t = α J x + β E x
J y t = α J y + β E y
ε eff = ε 0 ε
α = Γ D
β = ε 0 ω D 2

Metrics