Abstract

We demonstrate the optical manipulation of cells and dielectric particles on the surface of silicon nitride waveguides. Glass particles with 2μm diameter are propelled at velocities of 15μm/s with a guided power of 20mW. This is approximately 20 times more efficient than previously reported, and permits to use this device on low refractive index objects such as cells. Red blood cells and yeast cells can be trapped on the waveguide and pushed along it by the action of optical forces. This kind of system can easily be combined with various integrated optical structures and opens the way to the development of new microsystems for cell sorting applications.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970)
    [Crossref]
  2. A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235, 1517–1520 (1987)
    [Crossref] [PubMed]
  3. P. Korda, G. C. Spalding, E. R. Dufresne, and D. G. Grier, “Nanofabrication with holographic optical tweezers,” Rev. Sci. Instr. 73, 1956–1957 (2002)
    [Crossref]
  4. J. Arlt, V. Garces-Chavez, W. Sibbett, and K. Dholakia, “Optical micromanipulation using a Bessel light beam,” Opt. Commun. 197, 239–245 (2001)
    [Crossref]
  5. E. R. Dufresne and D. G. Grier “Optical tweezers arrays and optical substrates created with diffractive optics,” Rev. Sci. Instr. 69, 1974–1977 (1998)
    [Crossref]
  6. R. A. Flynn, A. L. Birkbeck, M. Gross, M. Ozkan, B. Shao, M. M. Wang, and S. C. Esener, “Parallel transport of biological cells using individually addressable VCSEL arrays as optical tweezers,” Sens. Actuators B 87, 239–243 (2002)
    [Crossref]
  7. H. Andersson and A. Van Der Berg, “Microfluidic devices for cellomics: a review,” Sens. Actuators B 92, 315–325 (2003)
    [Crossref]
  8. M. M. Wang, E. Tu, D. E. Raymond, J. Mo Yang, H. Zhang, N. Hagen, B. Dees, E. M. Mercer, A. H. Forster, I. Kariv, P. J. Marchand, and W. F. Butler, “Microfluidic sorting of mammalian cells by optical force switching,” Nature Biotech. 23 (1), 83–87 (2005)
    [Crossref]
  9. M. P. MacDonald, G. C. Spalding, and K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature 426, 421–424 (2003)
    [Crossref] [PubMed]
  10. S. Kawata and T. Sugiura, “Movement of micrometer-sized particles in the evanescent field of a laser beam,” Opt. Lett. 17, 772–774 (1992)
    [Crossref] [PubMed]
  11. S. Kawata and T. Tani, “Optically driven Mie particles in an evanescent field along a channeled waveguide,” Opt. Lett. 21, 1768–1770 (1996)
    [Crossref] [PubMed]
  12. L. N. Ng, B. J. Luff, M. N. Zervas, and J. S. Wilkinson, “Propulsion of gold nanoparticles on optical waveguides,” Opt. Commun. 208, 117–124 (2002)
    [Crossref]
  13. K. Grujic, O. G. Hellesø, J. P. Hole, and J. S. Wilkinson “Sorting of polystyrene microspheres using a Y-branches optical waveguide,” Opt. Express 13, 1–7 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-1-1
    [Crossref] [PubMed]
  14. K. Grujic, O. G. Hellesø, J. S. Wilkinson, and J. P. Hole, “Optical propulsion of microspheres along a channel waveguide produced by Cs+ ion-exchange in glass,” Opt. Commun. 239, 227–235 (2004)
    [Crossref]
  15. H.Y. Jaising and O.G. Hellesø, “Radiation forces on a Mie particle in the evanescent field of an optical waveguide,” Opt. Commun. 246, 373–383 (2005)
    [Crossref]
  16. J. D. Jackson, “Classical electrodynamics,” Wiley (1975)
  17. I. Brevik, “Experiments in phenomenological electrodynamics and the energy-momentum tensor,” Phys. Rep. 52, 133–201 (1979)
    [Crossref]
  18. R.C. Gauthier, “Computation of the optical trapping force using an FDTD based technique,” Opt. Express 13 (10), 3707–3718 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-10-3707
    [Crossref] [PubMed]
  19. K. Beilenhoff, H. Heinrich, and H. L. Hartnagel, “Improved finite difference formulation in frequency domain for three dimensional scattering problems,” IEEE Trans. Microw. Theory 40, 540–546 (1992)
    [Crossref]
  20. L. N. Ng, B. J. Luff, M. N. Zervas, and J. S. Wilkinson, “Forces on a Rayleigh particle in the cover region of a planar waveguide,” J. Lightwave Technol. 18, 388–400 (2000)
    [Crossref]

2005 (4)

M. M. Wang, E. Tu, D. E. Raymond, J. Mo Yang, H. Zhang, N. Hagen, B. Dees, E. M. Mercer, A. H. Forster, I. Kariv, P. J. Marchand, and W. F. Butler, “Microfluidic sorting of mammalian cells by optical force switching,” Nature Biotech. 23 (1), 83–87 (2005)
[Crossref]

H.Y. Jaising and O.G. Hellesø, “Radiation forces on a Mie particle in the evanescent field of an optical waveguide,” Opt. Commun. 246, 373–383 (2005)
[Crossref]

K. Grujic, O. G. Hellesø, J. P. Hole, and J. S. Wilkinson “Sorting of polystyrene microspheres using a Y-branches optical waveguide,” Opt. Express 13, 1–7 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-1-1
[Crossref] [PubMed]

R.C. Gauthier, “Computation of the optical trapping force using an FDTD based technique,” Opt. Express 13 (10), 3707–3718 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-10-3707
[Crossref] [PubMed]

2004 (1)

K. Grujic, O. G. Hellesø, J. S. Wilkinson, and J. P. Hole, “Optical propulsion of microspheres along a channel waveguide produced by Cs+ ion-exchange in glass,” Opt. Commun. 239, 227–235 (2004)
[Crossref]

2003 (2)

M. P. MacDonald, G. C. Spalding, and K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature 426, 421–424 (2003)
[Crossref] [PubMed]

H. Andersson and A. Van Der Berg, “Microfluidic devices for cellomics: a review,” Sens. Actuators B 92, 315–325 (2003)
[Crossref]

2002 (3)

R. A. Flynn, A. L. Birkbeck, M. Gross, M. Ozkan, B. Shao, M. M. Wang, and S. C. Esener, “Parallel transport of biological cells using individually addressable VCSEL arrays as optical tweezers,” Sens. Actuators B 87, 239–243 (2002)
[Crossref]

P. Korda, G. C. Spalding, E. R. Dufresne, and D. G. Grier, “Nanofabrication with holographic optical tweezers,” Rev. Sci. Instr. 73, 1956–1957 (2002)
[Crossref]

L. N. Ng, B. J. Luff, M. N. Zervas, and J. S. Wilkinson, “Propulsion of gold nanoparticles on optical waveguides,” Opt. Commun. 208, 117–124 (2002)
[Crossref]

2001 (1)

J. Arlt, V. Garces-Chavez, W. Sibbett, and K. Dholakia, “Optical micromanipulation using a Bessel light beam,” Opt. Commun. 197, 239–245 (2001)
[Crossref]

2000 (1)

1998 (1)

E. R. Dufresne and D. G. Grier “Optical tweezers arrays and optical substrates created with diffractive optics,” Rev. Sci. Instr. 69, 1974–1977 (1998)
[Crossref]

1996 (1)

1992 (2)

K. Beilenhoff, H. Heinrich, and H. L. Hartnagel, “Improved finite difference formulation in frequency domain for three dimensional scattering problems,” IEEE Trans. Microw. Theory 40, 540–546 (1992)
[Crossref]

S. Kawata and T. Sugiura, “Movement of micrometer-sized particles in the evanescent field of a laser beam,” Opt. Lett. 17, 772–774 (1992)
[Crossref] [PubMed]

1987 (1)

A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235, 1517–1520 (1987)
[Crossref] [PubMed]

1979 (1)

I. Brevik, “Experiments in phenomenological electrodynamics and the energy-momentum tensor,” Phys. Rep. 52, 133–201 (1979)
[Crossref]

1970 (1)

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970)
[Crossref]

Andersson, H.

H. Andersson and A. Van Der Berg, “Microfluidic devices for cellomics: a review,” Sens. Actuators B 92, 315–325 (2003)
[Crossref]

Arlt, J.

J. Arlt, V. Garces-Chavez, W. Sibbett, and K. Dholakia, “Optical micromanipulation using a Bessel light beam,” Opt. Commun. 197, 239–245 (2001)
[Crossref]

Ashkin, A.

A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235, 1517–1520 (1987)
[Crossref] [PubMed]

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970)
[Crossref]

Beilenhoff, K.

K. Beilenhoff, H. Heinrich, and H. L. Hartnagel, “Improved finite difference formulation in frequency domain for three dimensional scattering problems,” IEEE Trans. Microw. Theory 40, 540–546 (1992)
[Crossref]

Birkbeck, A. L.

R. A. Flynn, A. L. Birkbeck, M. Gross, M. Ozkan, B. Shao, M. M. Wang, and S. C. Esener, “Parallel transport of biological cells using individually addressable VCSEL arrays as optical tweezers,” Sens. Actuators B 87, 239–243 (2002)
[Crossref]

Brevik, I.

I. Brevik, “Experiments in phenomenological electrodynamics and the energy-momentum tensor,” Phys. Rep. 52, 133–201 (1979)
[Crossref]

Butler, W. F.

M. M. Wang, E. Tu, D. E. Raymond, J. Mo Yang, H. Zhang, N. Hagen, B. Dees, E. M. Mercer, A. H. Forster, I. Kariv, P. J. Marchand, and W. F. Butler, “Microfluidic sorting of mammalian cells by optical force switching,” Nature Biotech. 23 (1), 83–87 (2005)
[Crossref]

Dees, B.

M. M. Wang, E. Tu, D. E. Raymond, J. Mo Yang, H. Zhang, N. Hagen, B. Dees, E. M. Mercer, A. H. Forster, I. Kariv, P. J. Marchand, and W. F. Butler, “Microfluidic sorting of mammalian cells by optical force switching,” Nature Biotech. 23 (1), 83–87 (2005)
[Crossref]

Dholakia, K.

M. P. MacDonald, G. C. Spalding, and K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature 426, 421–424 (2003)
[Crossref] [PubMed]

J. Arlt, V. Garces-Chavez, W. Sibbett, and K. Dholakia, “Optical micromanipulation using a Bessel light beam,” Opt. Commun. 197, 239–245 (2001)
[Crossref]

Dufresne, E. R.

P. Korda, G. C. Spalding, E. R. Dufresne, and D. G. Grier, “Nanofabrication with holographic optical tweezers,” Rev. Sci. Instr. 73, 1956–1957 (2002)
[Crossref]

E. R. Dufresne and D. G. Grier “Optical tweezers arrays and optical substrates created with diffractive optics,” Rev. Sci. Instr. 69, 1974–1977 (1998)
[Crossref]

Dziedzic, J. M.

A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235, 1517–1520 (1987)
[Crossref] [PubMed]

Esener, S. C.

R. A. Flynn, A. L. Birkbeck, M. Gross, M. Ozkan, B. Shao, M. M. Wang, and S. C. Esener, “Parallel transport of biological cells using individually addressable VCSEL arrays as optical tweezers,” Sens. Actuators B 87, 239–243 (2002)
[Crossref]

Flynn, R. A.

R. A. Flynn, A. L. Birkbeck, M. Gross, M. Ozkan, B. Shao, M. M. Wang, and S. C. Esener, “Parallel transport of biological cells using individually addressable VCSEL arrays as optical tweezers,” Sens. Actuators B 87, 239–243 (2002)
[Crossref]

Forster, A. H.

M. M. Wang, E. Tu, D. E. Raymond, J. Mo Yang, H. Zhang, N. Hagen, B. Dees, E. M. Mercer, A. H. Forster, I. Kariv, P. J. Marchand, and W. F. Butler, “Microfluidic sorting of mammalian cells by optical force switching,” Nature Biotech. 23 (1), 83–87 (2005)
[Crossref]

Garces-Chavez, V.

J. Arlt, V. Garces-Chavez, W. Sibbett, and K. Dholakia, “Optical micromanipulation using a Bessel light beam,” Opt. Commun. 197, 239–245 (2001)
[Crossref]

Gauthier, R.C.

Grier, D. G.

P. Korda, G. C. Spalding, E. R. Dufresne, and D. G. Grier, “Nanofabrication with holographic optical tweezers,” Rev. Sci. Instr. 73, 1956–1957 (2002)
[Crossref]

E. R. Dufresne and D. G. Grier “Optical tweezers arrays and optical substrates created with diffractive optics,” Rev. Sci. Instr. 69, 1974–1977 (1998)
[Crossref]

Gross, M.

R. A. Flynn, A. L. Birkbeck, M. Gross, M. Ozkan, B. Shao, M. M. Wang, and S. C. Esener, “Parallel transport of biological cells using individually addressable VCSEL arrays as optical tweezers,” Sens. Actuators B 87, 239–243 (2002)
[Crossref]

Grujic, K.

K. Grujic, O. G. Hellesø, J. P. Hole, and J. S. Wilkinson “Sorting of polystyrene microspheres using a Y-branches optical waveguide,” Opt. Express 13, 1–7 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-1-1
[Crossref] [PubMed]

K. Grujic, O. G. Hellesø, J. S. Wilkinson, and J. P. Hole, “Optical propulsion of microspheres along a channel waveguide produced by Cs+ ion-exchange in glass,” Opt. Commun. 239, 227–235 (2004)
[Crossref]

Hagen, N.

M. M. Wang, E. Tu, D. E. Raymond, J. Mo Yang, H. Zhang, N. Hagen, B. Dees, E. M. Mercer, A. H. Forster, I. Kariv, P. J. Marchand, and W. F. Butler, “Microfluidic sorting of mammalian cells by optical force switching,” Nature Biotech. 23 (1), 83–87 (2005)
[Crossref]

Hartnagel, H. L.

K. Beilenhoff, H. Heinrich, and H. L. Hartnagel, “Improved finite difference formulation in frequency domain for three dimensional scattering problems,” IEEE Trans. Microw. Theory 40, 540–546 (1992)
[Crossref]

Heinrich, H.

K. Beilenhoff, H. Heinrich, and H. L. Hartnagel, “Improved finite difference formulation in frequency domain for three dimensional scattering problems,” IEEE Trans. Microw. Theory 40, 540–546 (1992)
[Crossref]

Hellesø, O. G.

K. Grujic, O. G. Hellesø, J. P. Hole, and J. S. Wilkinson “Sorting of polystyrene microspheres using a Y-branches optical waveguide,” Opt. Express 13, 1–7 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-1-1
[Crossref] [PubMed]

K. Grujic, O. G. Hellesø, J. S. Wilkinson, and J. P. Hole, “Optical propulsion of microspheres along a channel waveguide produced by Cs+ ion-exchange in glass,” Opt. Commun. 239, 227–235 (2004)
[Crossref]

Hellesø, O.G.

H.Y. Jaising and O.G. Hellesø, “Radiation forces on a Mie particle in the evanescent field of an optical waveguide,” Opt. Commun. 246, 373–383 (2005)
[Crossref]

Hole, J. P.

K. Grujic, O. G. Hellesø, J. P. Hole, and J. S. Wilkinson “Sorting of polystyrene microspheres using a Y-branches optical waveguide,” Opt. Express 13, 1–7 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-1-1
[Crossref] [PubMed]

K. Grujic, O. G. Hellesø, J. S. Wilkinson, and J. P. Hole, “Optical propulsion of microspheres along a channel waveguide produced by Cs+ ion-exchange in glass,” Opt. Commun. 239, 227–235 (2004)
[Crossref]

Jackson, J. D.

J. D. Jackson, “Classical electrodynamics,” Wiley (1975)

Jaising, H.Y.

H.Y. Jaising and O.G. Hellesø, “Radiation forces on a Mie particle in the evanescent field of an optical waveguide,” Opt. Commun. 246, 373–383 (2005)
[Crossref]

Kariv, I.

M. M. Wang, E. Tu, D. E. Raymond, J. Mo Yang, H. Zhang, N. Hagen, B. Dees, E. M. Mercer, A. H. Forster, I. Kariv, P. J. Marchand, and W. F. Butler, “Microfluidic sorting of mammalian cells by optical force switching,” Nature Biotech. 23 (1), 83–87 (2005)
[Crossref]

Kawata, S.

Korda, P.

P. Korda, G. C. Spalding, E. R. Dufresne, and D. G. Grier, “Nanofabrication with holographic optical tweezers,” Rev. Sci. Instr. 73, 1956–1957 (2002)
[Crossref]

Luff, B. J.

L. N. Ng, B. J. Luff, M. N. Zervas, and J. S. Wilkinson, “Propulsion of gold nanoparticles on optical waveguides,” Opt. Commun. 208, 117–124 (2002)
[Crossref]

L. N. Ng, B. J. Luff, M. N. Zervas, and J. S. Wilkinson, “Forces on a Rayleigh particle in the cover region of a planar waveguide,” J. Lightwave Technol. 18, 388–400 (2000)
[Crossref]

MacDonald, M. P.

M. P. MacDonald, G. C. Spalding, and K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature 426, 421–424 (2003)
[Crossref] [PubMed]

Marchand, P. J.

M. M. Wang, E. Tu, D. E. Raymond, J. Mo Yang, H. Zhang, N. Hagen, B. Dees, E. M. Mercer, A. H. Forster, I. Kariv, P. J. Marchand, and W. F. Butler, “Microfluidic sorting of mammalian cells by optical force switching,” Nature Biotech. 23 (1), 83–87 (2005)
[Crossref]

Mercer, E. M.

M. M. Wang, E. Tu, D. E. Raymond, J. Mo Yang, H. Zhang, N. Hagen, B. Dees, E. M. Mercer, A. H. Forster, I. Kariv, P. J. Marchand, and W. F. Butler, “Microfluidic sorting of mammalian cells by optical force switching,” Nature Biotech. 23 (1), 83–87 (2005)
[Crossref]

Mo Yang, J.

M. M. Wang, E. Tu, D. E. Raymond, J. Mo Yang, H. Zhang, N. Hagen, B. Dees, E. M. Mercer, A. H. Forster, I. Kariv, P. J. Marchand, and W. F. Butler, “Microfluidic sorting of mammalian cells by optical force switching,” Nature Biotech. 23 (1), 83–87 (2005)
[Crossref]

Ng, L. N.

L. N. Ng, B. J. Luff, M. N. Zervas, and J. S. Wilkinson, “Propulsion of gold nanoparticles on optical waveguides,” Opt. Commun. 208, 117–124 (2002)
[Crossref]

L. N. Ng, B. J. Luff, M. N. Zervas, and J. S. Wilkinson, “Forces on a Rayleigh particle in the cover region of a planar waveguide,” J. Lightwave Technol. 18, 388–400 (2000)
[Crossref]

Ozkan, M.

R. A. Flynn, A. L. Birkbeck, M. Gross, M. Ozkan, B. Shao, M. M. Wang, and S. C. Esener, “Parallel transport of biological cells using individually addressable VCSEL arrays as optical tweezers,” Sens. Actuators B 87, 239–243 (2002)
[Crossref]

Raymond, D. E.

M. M. Wang, E. Tu, D. E. Raymond, J. Mo Yang, H. Zhang, N. Hagen, B. Dees, E. M. Mercer, A. H. Forster, I. Kariv, P. J. Marchand, and W. F. Butler, “Microfluidic sorting of mammalian cells by optical force switching,” Nature Biotech. 23 (1), 83–87 (2005)
[Crossref]

Shao, B.

R. A. Flynn, A. L. Birkbeck, M. Gross, M. Ozkan, B. Shao, M. M. Wang, and S. C. Esener, “Parallel transport of biological cells using individually addressable VCSEL arrays as optical tweezers,” Sens. Actuators B 87, 239–243 (2002)
[Crossref]

Sibbett, W.

J. Arlt, V. Garces-Chavez, W. Sibbett, and K. Dholakia, “Optical micromanipulation using a Bessel light beam,” Opt. Commun. 197, 239–245 (2001)
[Crossref]

Spalding, G. C.

M. P. MacDonald, G. C. Spalding, and K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature 426, 421–424 (2003)
[Crossref] [PubMed]

P. Korda, G. C. Spalding, E. R. Dufresne, and D. G. Grier, “Nanofabrication with holographic optical tweezers,” Rev. Sci. Instr. 73, 1956–1957 (2002)
[Crossref]

Sugiura, T.

Tani, T.

Tu, E.

M. M. Wang, E. Tu, D. E. Raymond, J. Mo Yang, H. Zhang, N. Hagen, B. Dees, E. M. Mercer, A. H. Forster, I. Kariv, P. J. Marchand, and W. F. Butler, “Microfluidic sorting of mammalian cells by optical force switching,” Nature Biotech. 23 (1), 83–87 (2005)
[Crossref]

Van Der Berg, A.

H. Andersson and A. Van Der Berg, “Microfluidic devices for cellomics: a review,” Sens. Actuators B 92, 315–325 (2003)
[Crossref]

Wang, M. M.

M. M. Wang, E. Tu, D. E. Raymond, J. Mo Yang, H. Zhang, N. Hagen, B. Dees, E. M. Mercer, A. H. Forster, I. Kariv, P. J. Marchand, and W. F. Butler, “Microfluidic sorting of mammalian cells by optical force switching,” Nature Biotech. 23 (1), 83–87 (2005)
[Crossref]

R. A. Flynn, A. L. Birkbeck, M. Gross, M. Ozkan, B. Shao, M. M. Wang, and S. C. Esener, “Parallel transport of biological cells using individually addressable VCSEL arrays as optical tweezers,” Sens. Actuators B 87, 239–243 (2002)
[Crossref]

Wilkinson, J. S.

K. Grujic, O. G. Hellesø, J. P. Hole, and J. S. Wilkinson “Sorting of polystyrene microspheres using a Y-branches optical waveguide,” Opt. Express 13, 1–7 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-1-1
[Crossref] [PubMed]

K. Grujic, O. G. Hellesø, J. S. Wilkinson, and J. P. Hole, “Optical propulsion of microspheres along a channel waveguide produced by Cs+ ion-exchange in glass,” Opt. Commun. 239, 227–235 (2004)
[Crossref]

L. N. Ng, B. J. Luff, M. N. Zervas, and J. S. Wilkinson, “Propulsion of gold nanoparticles on optical waveguides,” Opt. Commun. 208, 117–124 (2002)
[Crossref]

L. N. Ng, B. J. Luff, M. N. Zervas, and J. S. Wilkinson, “Forces on a Rayleigh particle in the cover region of a planar waveguide,” J. Lightwave Technol. 18, 388–400 (2000)
[Crossref]

Zervas, M. N.

L. N. Ng, B. J. Luff, M. N. Zervas, and J. S. Wilkinson, “Propulsion of gold nanoparticles on optical waveguides,” Opt. Commun. 208, 117–124 (2002)
[Crossref]

L. N. Ng, B. J. Luff, M. N. Zervas, and J. S. Wilkinson, “Forces on a Rayleigh particle in the cover region of a planar waveguide,” J. Lightwave Technol. 18, 388–400 (2000)
[Crossref]

Zhang, H.

M. M. Wang, E. Tu, D. E. Raymond, J. Mo Yang, H. Zhang, N. Hagen, B. Dees, E. M. Mercer, A. H. Forster, I. Kariv, P. J. Marchand, and W. F. Butler, “Microfluidic sorting of mammalian cells by optical force switching,” Nature Biotech. 23 (1), 83–87 (2005)
[Crossref]

IEEE Trans. Microw. Theory (1)

K. Beilenhoff, H. Heinrich, and H. L. Hartnagel, “Improved finite difference formulation in frequency domain for three dimensional scattering problems,” IEEE Trans. Microw. Theory 40, 540–546 (1992)
[Crossref]

J. Lightwave Technol. (1)

Nature (1)

M. P. MacDonald, G. C. Spalding, and K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature 426, 421–424 (2003)
[Crossref] [PubMed]

Nature Biotech. (1)

M. M. Wang, E. Tu, D. E. Raymond, J. Mo Yang, H. Zhang, N. Hagen, B. Dees, E. M. Mercer, A. H. Forster, I. Kariv, P. J. Marchand, and W. F. Butler, “Microfluidic sorting of mammalian cells by optical force switching,” Nature Biotech. 23 (1), 83–87 (2005)
[Crossref]

Opt. Commun. (4)

J. Arlt, V. Garces-Chavez, W. Sibbett, and K. Dholakia, “Optical micromanipulation using a Bessel light beam,” Opt. Commun. 197, 239–245 (2001)
[Crossref]

L. N. Ng, B. J. Luff, M. N. Zervas, and J. S. Wilkinson, “Propulsion of gold nanoparticles on optical waveguides,” Opt. Commun. 208, 117–124 (2002)
[Crossref]

K. Grujic, O. G. Hellesø, J. S. Wilkinson, and J. P. Hole, “Optical propulsion of microspheres along a channel waveguide produced by Cs+ ion-exchange in glass,” Opt. Commun. 239, 227–235 (2004)
[Crossref]

H.Y. Jaising and O.G. Hellesø, “Radiation forces on a Mie particle in the evanescent field of an optical waveguide,” Opt. Commun. 246, 373–383 (2005)
[Crossref]

Opt. Express (2)

Opt. Lett. (2)

Phys. Rep. (1)

I. Brevik, “Experiments in phenomenological electrodynamics and the energy-momentum tensor,” Phys. Rep. 52, 133–201 (1979)
[Crossref]

Phys. Rev. Lett. (1)

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970)
[Crossref]

Rev. Sci. Instr. (2)

P. Korda, G. C. Spalding, E. R. Dufresne, and D. G. Grier, “Nanofabrication with holographic optical tweezers,” Rev. Sci. Instr. 73, 1956–1957 (2002)
[Crossref]

E. R. Dufresne and D. G. Grier “Optical tweezers arrays and optical substrates created with diffractive optics,” Rev. Sci. Instr. 69, 1974–1977 (1998)
[Crossref]

Science (1)

A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235, 1517–1520 (1987)
[Crossref] [PubMed]

Sens. Actuators B (2)

R. A. Flynn, A. L. Birkbeck, M. Gross, M. Ozkan, B. Shao, M. M. Wang, and S. C. Esener, “Parallel transport of biological cells using individually addressable VCSEL arrays as optical tweezers,” Sens. Actuators B 87, 239–243 (2002)
[Crossref]

H. Andersson and A. Van Der Berg, “Microfluidic devices for cellomics: a review,” Sens. Actuators B 92, 315–325 (2003)
[Crossref]

Other (1)

J. D. Jackson, “Classical electrodynamics,” Wiley (1975)

Supplementary Material (3)

» Media 1: MPG (2388 KB)     
» Media 2: MPG (1012 KB)     
» Media 3: MPG (2013 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Representation of the electromagnetic energy density in the waveguide and the force density distribution (a) on the surface of the particle (red arrows). To the left, a cross-section parallel to the waveguide. On the right, a cross section orthogonal to the waveguide.

Fig. 2.
Fig. 2.

Comparison of radiation pressure forces using numerical calculation and Rayleigh theory.

Fig. 3.
Fig. 3.

Experimental set up

Fig. 4.
Fig. 4.

(2.4MB) Movie of glass particles propulsion (w = waveguide width).

Fig. 5.
Fig. 5.

(1MB) Movie of red blood cells manipulation

Fig. 6.
Fig. 6.

(2MB) movie of yeast cells manipulation

Tables (2)

Tables Icon

Table 1. Properties of the different waveguides.

Tables Icon

Table 2. Calculation of the optical forces on different kinds of waveguides for glass spheres with 500 nm diameter (n2=1.55) in water (n1=1.33).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

F = S T . n d S = V f v d V
f v = 1 2 E 2 ε
σ = 1 2 E 2 ( n 2 2 n 1 2 )

Metrics