Abstract

A laser-scanning surface plasmon resonance microscope was used to observe the birefringence of an anisotropic sample in real-time. Since this system utilizes the resonance of the surface plasmon with incident light, it can measure the absolute value of the sample’s refractive index with high sensitivity. In addition, this system can simultaneously measure the orientation of the birefringence. This system does not need any moving optical components, and it can thus obtain the refractive indices in real-time. Experimental results of observing birefringence changes in real-time (video rate) are demonstrated.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. M. Yeatman and E. A. Ash, “Surface plasmon microscopy,” Electron. Lett. 23, 1091 (1987)..
    [Crossref]
  2. E. M. Yeatman and E. A. Ash, “Surface Plasmon Scanning Microscopy,” SPIE 897, 100 (1988).
  3. B. Rothenhäusler and W. Knoll, “Surface-plasmon microscopy,” Nature 332, 615 (1988).
    [Crossref]
  4. W. Hickel, B Rothenhausler, and W. Knoll, “Surface plasmon microscopic characterization of external surfaces,” J. Appl. Phys. 66, 4832 (1989).
    [Crossref]
  5. E. M. Yeatman and M E. Caldwell, “Spatial light modulation using surface plasmon resonance,” Appl. Phys. Lett. 55, 613 (1989).
    [Crossref]
  6. M. E. Caldwell and E. M. Yeatman, “Surface-plasmon spatial light modulators based on liquid crystal,” Appl. Opt. 31, 3880 (1992).
    [Crossref] [PubMed]
  7. S. D. Evans, H. Allinson, N. Boden, T. M. Flynn, and J. R. Henderson, “Surface Plasmon Resonance Imaging of Liquid Crystal Anchoring on Patterned Self-Assembled Monolayers,” J. Phys. Chem. B 101, 2143 (1997).
    [Crossref]
  8. E. M. Yeatman, “Resolution and sensitivity in surface plasmon microscopy and sensing,” Biosensors & Bioelectronics,  11, 635 (1996).
    [Crossref]
  9. C. E. H. Berger, R. P. H. Kooyman, and J. Greve, “Resolution in surface plasmon micrsocopy,” Rev. Sci. Instrum. 65, 2829 (1994).
    [Crossref]
  10. H. E. de Bruijn, R. P. H. Kooyman, and J. Greve, “Surface plasmon resonance microscopy: improvement of the resolution by rotation of the object,” Appl. Opt. 32, 2426 (1993).
    [Crossref] [PubMed]
  11. T. Tanaka and S. Yamamoto, “Laser-scanning surface plasmon polariton resonance microscopy with multiple photodetectors,” Appl. Opt.,  42, 4002 (2003).
    [Crossref] [PubMed]
  12. H. Kano, S. Mizuguchi, and S. Kawata, “Excitation of surface-plasmon polaritons by a focused laser beam,” J. Opt. Soc. Am. B 15, 1381 (1998).
    [Crossref]
  13. H. Kano and W. Knoll, “Locally excited surface-plasmon polaritons for thickness measurement of LBK films,” Opt. Commun. 153, 235 (1998).
    [Crossref]
  14. E. Kretschmann and H. Raether, “Radiative decay of nonradiative surface plasmons excited by light,” Z. Naturforsch. A 23, 2135 (1968).
  15. R. M. A. Azzam and N. M. Bashara, ELLIPSOMETRY AND POLARIZED LIGHT (ELSEVIER, Amsterdam) 1987.
  16. N. Callamaras and I. Parker, “Construction of a confocal microscope for real-time x-y and x-z imaging,” Cell. Calcium 26, 271 (1999).
    [Crossref]

2003 (1)

1999 (1)

N. Callamaras and I. Parker, “Construction of a confocal microscope for real-time x-y and x-z imaging,” Cell. Calcium 26, 271 (1999).
[Crossref]

1998 (2)

H. Kano, S. Mizuguchi, and S. Kawata, “Excitation of surface-plasmon polaritons by a focused laser beam,” J. Opt. Soc. Am. B 15, 1381 (1998).
[Crossref]

H. Kano and W. Knoll, “Locally excited surface-plasmon polaritons for thickness measurement of LBK films,” Opt. Commun. 153, 235 (1998).
[Crossref]

1997 (1)

S. D. Evans, H. Allinson, N. Boden, T. M. Flynn, and J. R. Henderson, “Surface Plasmon Resonance Imaging of Liquid Crystal Anchoring on Patterned Self-Assembled Monolayers,” J. Phys. Chem. B 101, 2143 (1997).
[Crossref]

1996 (1)

E. M. Yeatman, “Resolution and sensitivity in surface plasmon microscopy and sensing,” Biosensors & Bioelectronics,  11, 635 (1996).
[Crossref]

1994 (1)

C. E. H. Berger, R. P. H. Kooyman, and J. Greve, “Resolution in surface plasmon micrsocopy,” Rev. Sci. Instrum. 65, 2829 (1994).
[Crossref]

1993 (1)

1992 (1)

1989 (2)

W. Hickel, B Rothenhausler, and W. Knoll, “Surface plasmon microscopic characterization of external surfaces,” J. Appl. Phys. 66, 4832 (1989).
[Crossref]

E. M. Yeatman and M E. Caldwell, “Spatial light modulation using surface plasmon resonance,” Appl. Phys. Lett. 55, 613 (1989).
[Crossref]

1988 (2)

E. M. Yeatman and E. A. Ash, “Surface Plasmon Scanning Microscopy,” SPIE 897, 100 (1988).

B. Rothenhäusler and W. Knoll, “Surface-plasmon microscopy,” Nature 332, 615 (1988).
[Crossref]

1987 (1)

E. M. Yeatman and E. A. Ash, “Surface plasmon microscopy,” Electron. Lett. 23, 1091 (1987)..
[Crossref]

1968 (1)

E. Kretschmann and H. Raether, “Radiative decay of nonradiative surface plasmons excited by light,” Z. Naturforsch. A 23, 2135 (1968).

Allinson, H.

S. D. Evans, H. Allinson, N. Boden, T. M. Flynn, and J. R. Henderson, “Surface Plasmon Resonance Imaging of Liquid Crystal Anchoring on Patterned Self-Assembled Monolayers,” J. Phys. Chem. B 101, 2143 (1997).
[Crossref]

Ash, E. A.

E. M. Yeatman and E. A. Ash, “Surface Plasmon Scanning Microscopy,” SPIE 897, 100 (1988).

E. M. Yeatman and E. A. Ash, “Surface plasmon microscopy,” Electron. Lett. 23, 1091 (1987)..
[Crossref]

Azzam, R. M. A.

R. M. A. Azzam and N. M. Bashara, ELLIPSOMETRY AND POLARIZED LIGHT (ELSEVIER, Amsterdam) 1987.

Bashara, N. M.

R. M. A. Azzam and N. M. Bashara, ELLIPSOMETRY AND POLARIZED LIGHT (ELSEVIER, Amsterdam) 1987.

Berger, C. E. H.

C. E. H. Berger, R. P. H. Kooyman, and J. Greve, “Resolution in surface plasmon micrsocopy,” Rev. Sci. Instrum. 65, 2829 (1994).
[Crossref]

Boden, N.

S. D. Evans, H. Allinson, N. Boden, T. M. Flynn, and J. R. Henderson, “Surface Plasmon Resonance Imaging of Liquid Crystal Anchoring on Patterned Self-Assembled Monolayers,” J. Phys. Chem. B 101, 2143 (1997).
[Crossref]

Caldwell, M E.

E. M. Yeatman and M E. Caldwell, “Spatial light modulation using surface plasmon resonance,” Appl. Phys. Lett. 55, 613 (1989).
[Crossref]

Caldwell, M. E.

Callamaras, N.

N. Callamaras and I. Parker, “Construction of a confocal microscope for real-time x-y and x-z imaging,” Cell. Calcium 26, 271 (1999).
[Crossref]

de Bruijn, H. E.

Evans, S. D.

S. D. Evans, H. Allinson, N. Boden, T. M. Flynn, and J. R. Henderson, “Surface Plasmon Resonance Imaging of Liquid Crystal Anchoring on Patterned Self-Assembled Monolayers,” J. Phys. Chem. B 101, 2143 (1997).
[Crossref]

Flynn, T. M.

S. D. Evans, H. Allinson, N. Boden, T. M. Flynn, and J. R. Henderson, “Surface Plasmon Resonance Imaging of Liquid Crystal Anchoring on Patterned Self-Assembled Monolayers,” J. Phys. Chem. B 101, 2143 (1997).
[Crossref]

Greve, J.

Henderson, J. R.

S. D. Evans, H. Allinson, N. Boden, T. M. Flynn, and J. R. Henderson, “Surface Plasmon Resonance Imaging of Liquid Crystal Anchoring on Patterned Self-Assembled Monolayers,” J. Phys. Chem. B 101, 2143 (1997).
[Crossref]

Hickel, W.

W. Hickel, B Rothenhausler, and W. Knoll, “Surface plasmon microscopic characterization of external surfaces,” J. Appl. Phys. 66, 4832 (1989).
[Crossref]

Kano, H.

H. Kano and W. Knoll, “Locally excited surface-plasmon polaritons for thickness measurement of LBK films,” Opt. Commun. 153, 235 (1998).
[Crossref]

H. Kano, S. Mizuguchi, and S. Kawata, “Excitation of surface-plasmon polaritons by a focused laser beam,” J. Opt. Soc. Am. B 15, 1381 (1998).
[Crossref]

Kawata, S.

Knoll, W.

H. Kano and W. Knoll, “Locally excited surface-plasmon polaritons for thickness measurement of LBK films,” Opt. Commun. 153, 235 (1998).
[Crossref]

W. Hickel, B Rothenhausler, and W. Knoll, “Surface plasmon microscopic characterization of external surfaces,” J. Appl. Phys. 66, 4832 (1989).
[Crossref]

B. Rothenhäusler and W. Knoll, “Surface-plasmon microscopy,” Nature 332, 615 (1988).
[Crossref]

Kooyman, R. P. H.

Kretschmann, E.

E. Kretschmann and H. Raether, “Radiative decay of nonradiative surface plasmons excited by light,” Z. Naturforsch. A 23, 2135 (1968).

Mizuguchi, S.

Parker, I.

N. Callamaras and I. Parker, “Construction of a confocal microscope for real-time x-y and x-z imaging,” Cell. Calcium 26, 271 (1999).
[Crossref]

Raether, H.

E. Kretschmann and H. Raether, “Radiative decay of nonradiative surface plasmons excited by light,” Z. Naturforsch. A 23, 2135 (1968).

Rothenhausler, B

W. Hickel, B Rothenhausler, and W. Knoll, “Surface plasmon microscopic characterization of external surfaces,” J. Appl. Phys. 66, 4832 (1989).
[Crossref]

Rothenhäusler, B.

B. Rothenhäusler and W. Knoll, “Surface-plasmon microscopy,” Nature 332, 615 (1988).
[Crossref]

Tanaka, T.

Yamamoto, S.

Yeatman, E. M.

E. M. Yeatman, “Resolution and sensitivity in surface plasmon microscopy and sensing,” Biosensors & Bioelectronics,  11, 635 (1996).
[Crossref]

M. E. Caldwell and E. M. Yeatman, “Surface-plasmon spatial light modulators based on liquid crystal,” Appl. Opt. 31, 3880 (1992).
[Crossref] [PubMed]

E. M. Yeatman and M E. Caldwell, “Spatial light modulation using surface plasmon resonance,” Appl. Phys. Lett. 55, 613 (1989).
[Crossref]

E. M. Yeatman and E. A. Ash, “Surface Plasmon Scanning Microscopy,” SPIE 897, 100 (1988).

E. M. Yeatman and E. A. Ash, “Surface plasmon microscopy,” Electron. Lett. 23, 1091 (1987)..
[Crossref]

Appl. Opt. (3)

Appl. Phys. Lett. (1)

E. M. Yeatman and M E. Caldwell, “Spatial light modulation using surface plasmon resonance,” Appl. Phys. Lett. 55, 613 (1989).
[Crossref]

Biosensors & Bioelectronics (1)

E. M. Yeatman, “Resolution and sensitivity in surface plasmon microscopy and sensing,” Biosensors & Bioelectronics,  11, 635 (1996).
[Crossref]

Cell. Calcium (1)

N. Callamaras and I. Parker, “Construction of a confocal microscope for real-time x-y and x-z imaging,” Cell. Calcium 26, 271 (1999).
[Crossref]

Electron. Lett. (1)

E. M. Yeatman and E. A. Ash, “Surface plasmon microscopy,” Electron. Lett. 23, 1091 (1987)..
[Crossref]

J. Appl. Phys. (1)

W. Hickel, B Rothenhausler, and W. Knoll, “Surface plasmon microscopic characterization of external surfaces,” J. Appl. Phys. 66, 4832 (1989).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. B (1)

S. D. Evans, H. Allinson, N. Boden, T. M. Flynn, and J. R. Henderson, “Surface Plasmon Resonance Imaging of Liquid Crystal Anchoring on Patterned Self-Assembled Monolayers,” J. Phys. Chem. B 101, 2143 (1997).
[Crossref]

Nature (1)

B. Rothenhäusler and W. Knoll, “Surface-plasmon microscopy,” Nature 332, 615 (1988).
[Crossref]

Opt. Commun. (1)

H. Kano and W. Knoll, “Locally excited surface-plasmon polaritons for thickness measurement of LBK films,” Opt. Commun. 153, 235 (1998).
[Crossref]

Rev. Sci. Instrum. (1)

C. E. H. Berger, R. P. H. Kooyman, and J. Greve, “Resolution in surface plasmon micrsocopy,” Rev. Sci. Instrum. 65, 2829 (1994).
[Crossref]

SPIE (1)

E. M. Yeatman and E. A. Ash, “Surface Plasmon Scanning Microscopy,” SPIE 897, 100 (1988).

Z. Naturforsch. A (1)

E. Kretschmann and H. Raether, “Radiative decay of nonradiative surface plasmons excited by light,” Z. Naturforsch. A 23, 2135 (1968).

Other (1)

R. M. A. Azzam and N. M. Bashara, ELLIPSOMETRY AND POLARIZED LIGHT (ELSEVIER, Amsterdam) 1987.

Supplementary Material (1)

» Media 1: MOV (2646 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic diagram of optical setup of laser-scanning surface plasmon resonance microscope.

Fig. 2.
Fig. 2.

Optical arrangement for exciting surface plasmons by use of a high-numerical-aperture objective lens. This figure also depicts the creation of a dark ring due to the absorption of the surface plasmon excitation.

Fig. 3.
Fig. 3.

The configuration of the liquid crystal cell.

Fig. 4.
Fig. 4.

Experimental results of the observed elliptic dark ring. Liquid crystal (LC) molecules were aligned (a) in the horizontal direction, and (b) in the vertical direction.

Fig. 5.
Fig. 5.

Relationship between incident angle and reflectance. (a) Schematic diagram of the numerical simulation model. (b) The results of calculation. Lowest reflectance point corresponds to the surface plasmon’s excitation angle.

Fig. 6.
Fig. 6.

(2.5MB Movie) Deformation of the dark ring when external voltage is applied and removed.

Metrics