Abstract

The broadband emission in the 1.2~1.6μm region from Li2O-Al2O3-ZnO-SiO2 ( LAZS ) glass codoped with 0.01mol.%Cr2O3 and 1.0mol.%Bi2O3 when pumped by the 808nm laser at room temperature is not initiated from Cr4+ ions, but from bismuth, which is remarkably different from the results reported by Batchelor et al. The broad ~1300nm emission from Bi2O3-containing LAZS glasses possesses a FWHM ( Full Width at Half Maximum ) more than 250nm and a fluorescent lifetime longer than 500μs when excited by the 808nm laser. These glasses might have the potential applications in the broadly tunable lasers and the broadband fiber amplifiers.

© 2005 Optical Society of America

PDF Article

References

  • View by:
  • |

  1. M. Yamjada, H. Ono, and Y. Ohishi, "Low-noise, broadband Er3+-doped silica fiber amplifiers," Electron. Lett. 34, 1490-1491 (1998).
    [CrossRef]
  2. S. Tanabe and X. Feng, �??Temperature variation of near-infrared emission from Cr4+ in aluminate glass for broadband telecommunication,�?? Appl. Phys. Lett. 77, 818-820 (2000).
    [CrossRef]
  3. T. Suzuki and Y. Ohishi, �??Broadband 1400nm emission from Ni2+ in zinc-alumino-silicate glass,�?? Appl. Phys. Lett. 84, 3804-3806 (2004).
    [CrossRef]
  4. C. Batchelor, W. Chung, S. Shen, and A. Jha, �??Enhanced room-temperature emission in Cr4+ ions containing alumino-silicate glasses,�?? Appl. Phys. Lett. 82, 4035-4037 (2003).
    [CrossRef]
  5. A. Paul and R. Douglas, �??Ultraviolet absorption of chromium (VI) in some binary and ternary alkali and alkaline earth oxide glasses,�?? Phys. Chem. Glasses 9, 27-31 (1968).
  6. G. Boulon, �??Luminescence in glassy and glass ceramic materials,�?? Mater. Chem. Phys. 16, 301-347 (1987).
  7. M. Peng, J. Qiu, D. Chen, X. Meng, L. Yang, X. Jiang, and C. Zhu, �??Bismuth- and aluminum-codoped germanium oxide glasses for super-broadband optical amplification,�?? Opt. Lett. 29, 1998-2000 (2004).
    [CrossRef]
  8. Y. Fujimoto and M. Nakatsuka, �??Infrared luminescence from bismuth-doped silica glass,�?? Jpn. J. App. Phys. 40, L279-281 (2001).
  9. X. Meng, J. Qiu, M. Peng, D. Chen, Q. Zhao, X. Jiang, and C. Zhu, "Near infrared broadband emission of bismuth-doped aluminophosphate glass", Opt. Express 13, 1628-1634 (2005), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-5-1628">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-5-1628</a>.
    [CrossRef]
  10. X. Meng, J. Qiu, M. Peng, D. Chen, Q. Zhao, X. Jiang, and C. Zhu, "Near broadband emission of bismuth-doped barium-aluminum-borate glasses", Opt. Express 13, 1635-1642 (2005), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-5-1635">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-5-1635</a>.
    [CrossRef]
  11. G. Blasse and A. Brill, �??Investigations on Bi3+-activated phosphors,�?? J. Chem. Phys. 48, 217-222 (1968).
    [CrossRef]
  12. S. Parke and R.S. Webb, �??The optical properties of thallium, lead and bismuth in oxide glasses,�?? J. Phys. Chem. Solids 34, 85-95 (1973).
  13. G. Blasse, A. Meijerink, M. Nomes and J. Zuidema, �??Unusual bismuth luminescence in strontium tetraborate ( SrB4O7: Bi ),�?? J. Phys. Chem. Solids 55, 171-174 (1994).
  14. A.M. Srivastava, �??Luminescence of divalent bismuth in M2+BPO5 ( M2+ = Ba2+, Sr2+ and Ca2+ ),�?? J. Lumin. 78, 239-243 (1998).
  15. M. B. Volf, �??Chemical approach to glass�??, Vol. 7 in Glass Science and Technology, (Elsevier Science Publishing Company, 1984), pp. 465-469.
  16. Y. Fujimoto and M. Nakatsuka, �??Optical amplification in bismuth-doped silica glass,�?? App. Phys. Lett. 82, 3325-3326 (2003).
    [CrossRef]

App. Phys. Lett.

Y. Fujimoto and M. Nakatsuka, �??Optical amplification in bismuth-doped silica glass,�?? App. Phys. Lett. 82, 3325-3326 (2003).
[CrossRef]

Appl. Phys. Lett.

S. Tanabe and X. Feng, �??Temperature variation of near-infrared emission from Cr4+ in aluminate glass for broadband telecommunication,�?? Appl. Phys. Lett. 77, 818-820 (2000).
[CrossRef]

T. Suzuki and Y. Ohishi, �??Broadband 1400nm emission from Ni2+ in zinc-alumino-silicate glass,�?? Appl. Phys. Lett. 84, 3804-3806 (2004).
[CrossRef]

C. Batchelor, W. Chung, S. Shen, and A. Jha, �??Enhanced room-temperature emission in Cr4+ ions containing alumino-silicate glasses,�?? Appl. Phys. Lett. 82, 4035-4037 (2003).
[CrossRef]

Electron. Lett.

M. Yamjada, H. Ono, and Y. Ohishi, "Low-noise, broadband Er3+-doped silica fiber amplifiers," Electron. Lett. 34, 1490-1491 (1998).
[CrossRef]

Glass Science and Technology

M. B. Volf, �??Chemical approach to glass�??, Vol. 7 in Glass Science and Technology, (Elsevier Science Publishing Company, 1984), pp. 465-469.

J. Chem. Phys.

G. Blasse and A. Brill, �??Investigations on Bi3+-activated phosphors,�?? J. Chem. Phys. 48, 217-222 (1968).
[CrossRef]

J. Lumin.

A.M. Srivastava, �??Luminescence of divalent bismuth in M2+BPO5 ( M2+ = Ba2+, Sr2+ and Ca2+ ),�?? J. Lumin. 78, 239-243 (1998).

J. Phys. Chem. Solids

S. Parke and R.S. Webb, �??The optical properties of thallium, lead and bismuth in oxide glasses,�?? J. Phys. Chem. Solids 34, 85-95 (1973).

G. Blasse, A. Meijerink, M. Nomes and J. Zuidema, �??Unusual bismuth luminescence in strontium tetraborate ( SrB4O7: Bi ),�?? J. Phys. Chem. Solids 55, 171-174 (1994).

Jpn. J. App. Phys.

Y. Fujimoto and M. Nakatsuka, �??Infrared luminescence from bismuth-doped silica glass,�?? Jpn. J. App. Phys. 40, L279-281 (2001).

Mater. Chem. Phys.

G. Boulon, �??Luminescence in glassy and glass ceramic materials,�?? Mater. Chem. Phys. 16, 301-347 (1987).

Opt. Express

Opt. Lett.

Phys. Chem. Glasses

A. Paul and R. Douglas, �??Ultraviolet absorption of chromium (VI) in some binary and ternary alkali and alkaline earth oxide glasses,�?? Phys. Chem. Glasses 9, 27-31 (1968).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics