Abstract

The broadband emission in the 1.2~1.6μm region from Li2O-Al2O3-ZnO-SiO2 (LAZS) glass codoped with 0.01mol.%Cr2O3 and 1.0mol.%Bi2O3 when pumped by the 808nm laser at room temperature is not initiated from Cr4+ ions, but from bismuth, which is remarkably different from the results reported by Batchelor et al. The broad ~1300nm emission from Bi2O3-containing LAZS glasses possesses a FWHM (Full Width at Half Maximum) more than 250nm and a fluorescent lifetime longer than 500μs when excited by the 808nm laser. These glasses might have the potential applications in the broadly tunable lasers and the broadband fiber amplifiers.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Yamjada, H. Ono, and Y. Ohishi, “Low-noise, broadband Er3+-doped silica fiber amplifiers” Electron. Lett. 34, 1490–1491 (1998).
    [CrossRef]
  2. S. Tanabe and X. Feng, “Temperature variation of near-infrared emission from Cr4+ in aluminate glass for broadband telecommunication,” Appl. Phys. Lett. 77, 818–820 (2000).
    [CrossRef]
  3. T. Suzuki and Y. Ohishi, “Broadband 1400nm emission from Ni2+ in zinc-alumino-silicate glass,” Appl. Phys. Lett. 84, 3804–3806 (2004).
    [CrossRef]
  4. C. Batchelor, W. Chung, S. Shen, and A. Jha, “Enhanced room-temperature emission in Cr4+ ions containing alumino-silicate glasses,” Appl. Phys. Lett. 82, 4035–4037 (2003).
    [CrossRef]
  5. A. Paul and R. Douglas, “Ultraviolet absorption of chromium (VI) in some binary and ternary alkali and alkaline earth oxide glasses,” Phys. Chem. Glasses 9, 27–31 (1968).
  6. G. Boulon, “Luminescence in glassy and glass ceramic materials,” Mater. Chem. Phys. 16, 301–347 (1987).
    [CrossRef]
  7. M. Peng, J. Qiu, D. Chen, X. Meng, L. Yang, X. Jiang, and C. Zhu, “Bismuth- and aluminum-codoped germanium oxide glasses for super-broadband optical amplification,” Opt. Lett. 29, 1998–2000 (2004).
    [CrossRef] [PubMed]
  8. Y. Fujimoto and M. Nakatsuka, “Infrared luminescence from bismuth-doped silica glass,” Jpn. J. App. Phys. 40, L279–281 (2001).
    [CrossRef]
  9. X. Meng, J. Qiu, M. Peng, D. Chen, Q. Zhao, X. Jiang, and C. Zhu, “Near infrared broadband emission of bismuth-doped aluminophosphate glass”, Opt. Express 13, 1628–1634 (2005),http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-5-1628.
    [CrossRef] [PubMed]
  10. X. Meng, J. Qiu, M. Peng, D. Chen, Q. Zhao, X. Jiang, and C. Zhu, “Near broadband emission of bismuth-doped barium-aluminum-borate glasses”, Opt. Express 13, 1635–1642 (2005),http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-5-1635.
    [CrossRef] [PubMed]
  11. G. Blasse and A. Brill, “Investigations on Bi3+-activated phosphors,” J. Chem. Phys. 48, 217–222 (1968).
    [CrossRef]
  12. S. Parke and R.S. Webb, “The optical properties of thallium, lead and bismuth in oxide glasses,” J. Phys. Chem. Solids 34, 85–95 (1973).
    [CrossRef]
  13. G. Blasse, A. Meijerink, M. Nomes, and J. Zuidema, “Unusual bismuth luminescence in strontium tetraborate ( SrB4O7: Bi ),” J. Phys. Chem. Solids 55, 171–174 (1994).
    [CrossRef]
  14. A.M. Srivastava, “Luminescence of divalent bismuth in M2+BPO5 ( M2+ = Ba2+, Sr2+ and Ca2+),” J. Lumin. 78, 239–243 (1998).
    [CrossRef]
  15. M. B. Volf, “Chemical approach to glass”, Vol. 7 in Glass Science and Technology, (Elsevier Science Publishing Company, 1984), pp. 465–469.
  16. Y. Fujimoto and M. Nakatsuka, “Optical amplification in bismuth-doped silica glass,” App. Phys. Lett. 82, 3325–3326 (2003).
    [CrossRef]

2005 (2)

2004 (2)

2003 (2)

C. Batchelor, W. Chung, S. Shen, and A. Jha, “Enhanced room-temperature emission in Cr4+ ions containing alumino-silicate glasses,” Appl. Phys. Lett. 82, 4035–4037 (2003).
[CrossRef]

Y. Fujimoto and M. Nakatsuka, “Optical amplification in bismuth-doped silica glass,” App. Phys. Lett. 82, 3325–3326 (2003).
[CrossRef]

2001 (1)

Y. Fujimoto and M. Nakatsuka, “Infrared luminescence from bismuth-doped silica glass,” Jpn. J. App. Phys. 40, L279–281 (2001).
[CrossRef]

2000 (1)

S. Tanabe and X. Feng, “Temperature variation of near-infrared emission from Cr4+ in aluminate glass for broadband telecommunication,” Appl. Phys. Lett. 77, 818–820 (2000).
[CrossRef]

1998 (2)

M. Yamjada, H. Ono, and Y. Ohishi, “Low-noise, broadband Er3+-doped silica fiber amplifiers” Electron. Lett. 34, 1490–1491 (1998).
[CrossRef]

A.M. Srivastava, “Luminescence of divalent bismuth in M2+BPO5 ( M2+ = Ba2+, Sr2+ and Ca2+),” J. Lumin. 78, 239–243 (1998).
[CrossRef]

1994 (1)

G. Blasse, A. Meijerink, M. Nomes, and J. Zuidema, “Unusual bismuth luminescence in strontium tetraborate ( SrB4O7: Bi ),” J. Phys. Chem. Solids 55, 171–174 (1994).
[CrossRef]

1987 (1)

G. Boulon, “Luminescence in glassy and glass ceramic materials,” Mater. Chem. Phys. 16, 301–347 (1987).
[CrossRef]

1973 (1)

S. Parke and R.S. Webb, “The optical properties of thallium, lead and bismuth in oxide glasses,” J. Phys. Chem. Solids 34, 85–95 (1973).
[CrossRef]

1968 (2)

G. Blasse and A. Brill, “Investigations on Bi3+-activated phosphors,” J. Chem. Phys. 48, 217–222 (1968).
[CrossRef]

A. Paul and R. Douglas, “Ultraviolet absorption of chromium (VI) in some binary and ternary alkali and alkaline earth oxide glasses,” Phys. Chem. Glasses 9, 27–31 (1968).

Batchelor, C.

C. Batchelor, W. Chung, S. Shen, and A. Jha, “Enhanced room-temperature emission in Cr4+ ions containing alumino-silicate glasses,” Appl. Phys. Lett. 82, 4035–4037 (2003).
[CrossRef]

Blasse, G.

G. Blasse, A. Meijerink, M. Nomes, and J. Zuidema, “Unusual bismuth luminescence in strontium tetraborate ( SrB4O7: Bi ),” J. Phys. Chem. Solids 55, 171–174 (1994).
[CrossRef]

G. Blasse and A. Brill, “Investigations on Bi3+-activated phosphors,” J. Chem. Phys. 48, 217–222 (1968).
[CrossRef]

Boulon, G.

G. Boulon, “Luminescence in glassy and glass ceramic materials,” Mater. Chem. Phys. 16, 301–347 (1987).
[CrossRef]

Brill, A.

G. Blasse and A. Brill, “Investigations on Bi3+-activated phosphors,” J. Chem. Phys. 48, 217–222 (1968).
[CrossRef]

Chen, D.

Chung, W.

C. Batchelor, W. Chung, S. Shen, and A. Jha, “Enhanced room-temperature emission in Cr4+ ions containing alumino-silicate glasses,” Appl. Phys. Lett. 82, 4035–4037 (2003).
[CrossRef]

Douglas, R.

A. Paul and R. Douglas, “Ultraviolet absorption of chromium (VI) in some binary and ternary alkali and alkaline earth oxide glasses,” Phys. Chem. Glasses 9, 27–31 (1968).

Feng, X.

S. Tanabe and X. Feng, “Temperature variation of near-infrared emission from Cr4+ in aluminate glass for broadband telecommunication,” Appl. Phys. Lett. 77, 818–820 (2000).
[CrossRef]

Fujimoto, Y.

Y. Fujimoto and M. Nakatsuka, “Optical amplification in bismuth-doped silica glass,” App. Phys. Lett. 82, 3325–3326 (2003).
[CrossRef]

Y. Fujimoto and M. Nakatsuka, “Infrared luminescence from bismuth-doped silica glass,” Jpn. J. App. Phys. 40, L279–281 (2001).
[CrossRef]

Jha, A.

C. Batchelor, W. Chung, S. Shen, and A. Jha, “Enhanced room-temperature emission in Cr4+ ions containing alumino-silicate glasses,” Appl. Phys. Lett. 82, 4035–4037 (2003).
[CrossRef]

Jiang, X.

Meijerink, A.

G. Blasse, A. Meijerink, M. Nomes, and J. Zuidema, “Unusual bismuth luminescence in strontium tetraborate ( SrB4O7: Bi ),” J. Phys. Chem. Solids 55, 171–174 (1994).
[CrossRef]

Meng, X.

Nakatsuka, M.

Y. Fujimoto and M. Nakatsuka, “Optical amplification in bismuth-doped silica glass,” App. Phys. Lett. 82, 3325–3326 (2003).
[CrossRef]

Y. Fujimoto and M. Nakatsuka, “Infrared luminescence from bismuth-doped silica glass,” Jpn. J. App. Phys. 40, L279–281 (2001).
[CrossRef]

Nomes, M.

G. Blasse, A. Meijerink, M. Nomes, and J. Zuidema, “Unusual bismuth luminescence in strontium tetraborate ( SrB4O7: Bi ),” J. Phys. Chem. Solids 55, 171–174 (1994).
[CrossRef]

Ohishi, Y.

T. Suzuki and Y. Ohishi, “Broadband 1400nm emission from Ni2+ in zinc-alumino-silicate glass,” Appl. Phys. Lett. 84, 3804–3806 (2004).
[CrossRef]

M. Yamjada, H. Ono, and Y. Ohishi, “Low-noise, broadband Er3+-doped silica fiber amplifiers” Electron. Lett. 34, 1490–1491 (1998).
[CrossRef]

Ono, H.

M. Yamjada, H. Ono, and Y. Ohishi, “Low-noise, broadband Er3+-doped silica fiber amplifiers” Electron. Lett. 34, 1490–1491 (1998).
[CrossRef]

Parke, S.

S. Parke and R.S. Webb, “The optical properties of thallium, lead and bismuth in oxide glasses,” J. Phys. Chem. Solids 34, 85–95 (1973).
[CrossRef]

Paul, A.

A. Paul and R. Douglas, “Ultraviolet absorption of chromium (VI) in some binary and ternary alkali and alkaline earth oxide glasses,” Phys. Chem. Glasses 9, 27–31 (1968).

Peng, M.

Qiu, J.

Shen, S.

C. Batchelor, W. Chung, S. Shen, and A. Jha, “Enhanced room-temperature emission in Cr4+ ions containing alumino-silicate glasses,” Appl. Phys. Lett. 82, 4035–4037 (2003).
[CrossRef]

Srivastava, A.M.

A.M. Srivastava, “Luminescence of divalent bismuth in M2+BPO5 ( M2+ = Ba2+, Sr2+ and Ca2+),” J. Lumin. 78, 239–243 (1998).
[CrossRef]

Suzuki, T.

T. Suzuki and Y. Ohishi, “Broadband 1400nm emission from Ni2+ in zinc-alumino-silicate glass,” Appl. Phys. Lett. 84, 3804–3806 (2004).
[CrossRef]

Tanabe, S.

S. Tanabe and X. Feng, “Temperature variation of near-infrared emission from Cr4+ in aluminate glass for broadband telecommunication,” Appl. Phys. Lett. 77, 818–820 (2000).
[CrossRef]

Volf, M. B.

M. B. Volf, “Chemical approach to glass”, Vol. 7 in Glass Science and Technology, (Elsevier Science Publishing Company, 1984), pp. 465–469.

Webb, R.S.

S. Parke and R.S. Webb, “The optical properties of thallium, lead and bismuth in oxide glasses,” J. Phys. Chem. Solids 34, 85–95 (1973).
[CrossRef]

Yamjada, M.

M. Yamjada, H. Ono, and Y. Ohishi, “Low-noise, broadband Er3+-doped silica fiber amplifiers” Electron. Lett. 34, 1490–1491 (1998).
[CrossRef]

Yang, L.

Zhao, Q.

Zhu, C.

Zuidema, J.

G. Blasse, A. Meijerink, M. Nomes, and J. Zuidema, “Unusual bismuth luminescence in strontium tetraborate ( SrB4O7: Bi ),” J. Phys. Chem. Solids 55, 171–174 (1994).
[CrossRef]

App. Phys. Lett. (1)

Y. Fujimoto and M. Nakatsuka, “Optical amplification in bismuth-doped silica glass,” App. Phys. Lett. 82, 3325–3326 (2003).
[CrossRef]

Appl. Phys. Lett. (3)

S. Tanabe and X. Feng, “Temperature variation of near-infrared emission from Cr4+ in aluminate glass for broadband telecommunication,” Appl. Phys. Lett. 77, 818–820 (2000).
[CrossRef]

T. Suzuki and Y. Ohishi, “Broadband 1400nm emission from Ni2+ in zinc-alumino-silicate glass,” Appl. Phys. Lett. 84, 3804–3806 (2004).
[CrossRef]

C. Batchelor, W. Chung, S. Shen, and A. Jha, “Enhanced room-temperature emission in Cr4+ ions containing alumino-silicate glasses,” Appl. Phys. Lett. 82, 4035–4037 (2003).
[CrossRef]

Electron. Lett. (1)

M. Yamjada, H. Ono, and Y. Ohishi, “Low-noise, broadband Er3+-doped silica fiber amplifiers” Electron. Lett. 34, 1490–1491 (1998).
[CrossRef]

J. Chem. Phys. (1)

G. Blasse and A. Brill, “Investigations on Bi3+-activated phosphors,” J. Chem. Phys. 48, 217–222 (1968).
[CrossRef]

J. Lumin. (1)

A.M. Srivastava, “Luminescence of divalent bismuth in M2+BPO5 ( M2+ = Ba2+, Sr2+ and Ca2+),” J. Lumin. 78, 239–243 (1998).
[CrossRef]

J. Phys. Chem. Solids (2)

S. Parke and R.S. Webb, “The optical properties of thallium, lead and bismuth in oxide glasses,” J. Phys. Chem. Solids 34, 85–95 (1973).
[CrossRef]

G. Blasse, A. Meijerink, M. Nomes, and J. Zuidema, “Unusual bismuth luminescence in strontium tetraborate ( SrB4O7: Bi ),” J. Phys. Chem. Solids 55, 171–174 (1994).
[CrossRef]

Jpn. J. App. Phys. (1)

Y. Fujimoto and M. Nakatsuka, “Infrared luminescence from bismuth-doped silica glass,” Jpn. J. App. Phys. 40, L279–281 (2001).
[CrossRef]

Mater. Chem. Phys. (1)

G. Boulon, “Luminescence in glassy and glass ceramic materials,” Mater. Chem. Phys. 16, 301–347 (1987).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Phys. Chem. Glasses (1)

A. Paul and R. Douglas, “Ultraviolet absorption of chromium (VI) in some binary and ternary alkali and alkaline earth oxide glasses,” Phys. Chem. Glasses 9, 27–31 (1968).

Other (1)

M. B. Volf, “Chemical approach to glass”, Vol. 7 in Glass Science and Technology, (Elsevier Science Publishing Company, 1984), pp. 465–469.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Absorption spectra of (a) LAZS, (b) LAZS: 0.01 mol.% Cr2O3, (c) LAZS: 1 mol.% Bi2O3 and (d) LAZS: 0.01 mol.% Cr2O3, 1 mol.% Bi2O3 glasses.

Fig. 2.
Fig. 2.

Fluorescence spectra of (a) LAZS, (b) LAZS: 0.01 mol.% Cr2O3, (c) LAZS: 0.04 mol.% Cr2O3, 1 mol.% Bi2O3, (d) LAZS: 0.01 mol.% Cr2O3, 1 mol.% Bi2O3 and (e) LAZS: 1 mol.% Bi2O3 glasses when pumped by 808nm laser; (f) fluorescent spectrum of LAZS: 1 mol.% Bi2O3 when pumped by 532nm laser. The peaks indicated by arrow are due to the second order diffraction of 808nm-laser.

Fig. 3.
Fig. 3.

Fluorescence decay curve of (a) LAZS: 1 mol.% Bi2O3 (LAZSB) and (b) LAZS: 0.01 mol.% Cr2O3, 1 mol.% Bi2O3 (LAZSCB) when pumped by 808nm. It was measured by monitoring the emission of 1300nm at room temperature. The correlation coefficients for the fits by the first-order exponential decay equation (LAZSB: I=1.04941e-t/583; LAZSCB: I=1.0202e-t/530) are 0.9668 for LAZSB and 0.9566 for LAZSCB; those by the second-order one (LAZSB: I=1.01865e-t/548+0.03168e-t/26569; LAZSCB: I=0.94003e-t/514+0.04921e-t/12129) are 0.9966 for LAZSB and 0.9970 for LAZSCB. “◦” line : experimental results; “-‡-”: fitting results by the first-order exponential decay equation; “‡”: fitting results by the second-order exponential decay equation.

Fig. 4.
Fig. 4.

Integrated fluorescence intensity and lifetime of LAZS: x mol.% Bi2O3 (x = 0.5, 1.0, 1.5, 2.0, 3.0, 5.0) glasses.

Metrics