Abstract

The photonic bandgaps (PBGs) of honeycomb photonic bandgap fibers (HPBFs) with and without interstitial air holes (IAHs) are numerically investigated. It is shown that the IAHs can increase the width of PBGs in HPBFs, and also that at the same moderate total air filling fraction, HPBFs with IAHs produce more uniform PBGs than those without IAHs. The bandgap behavior is qualitatively explained using the node-and-vein concept.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Bjarklev, J. Broeng, and A.S. Bjarklev, Photonic Crystal Fibres (Kluwer Academic Publishers, Boston, 2003).
    [CrossRef]
  2. P. Russell, “Photonic crystal fibers,” Science 299, 358–362 (2003).
    [CrossRef] [PubMed]
  3. J.C. Knight, “Photonic crystal fibres,” Nature 424, 847–851 (2003).
    [CrossRef] [PubMed]
  4. J. D. Joannopoulos, R.D. Meade, and J.N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University Press, Princeton, 1995).
  5. J. Broeng, S.E. Barkou, A. Bjarklev, J.C. Knight, T.A. Birks, and P.St.J. Russell, “Highly increased photonic band gaps in silica/air structures,” Opt. Commun. 156, 240–244 (1998).
    [CrossRef]
  6. J.C. Knight, J. Broeng, T.A. Birks, and P.St.J. Russell, “Photonic band gap guidance in optical fibers,” Science 282, 1476–1478 (1998).
    [CrossRef] [PubMed]
  7. M. Chen and R. Yu, “Analysis of photonic bandgaps in modified honeycomb structures,” IEEE Photonics Technol. Lett. 16, 819–821 (2004).
    [CrossRef]
  8. L. Zhang and C. Yang, “Photonic crystal fibers with squeezed hexagonal lattice,” Opt. Express 12, 2371–2376 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-11-2371
    [CrossRef] [PubMed]
  9. M. Yan, X. Yu, P. Shum, C. Lu, and Y. Zhu, “Honeycomb photonic bandgap fiber with a modified core design,” IEEE Photonics Technol. Lett. 16, 2051–2053 (2004).
    [CrossRef]
  10. M. Yan, P. Shum, and J. Hu, “Design of air-guiding honeycomb photonic bandgap fiber,” Opt. Lett. 30, 465–467 (2005).
    [CrossRef] [PubMed]
  11. J.C. Knight, T.A. Birks, P.St.J. Russell, and D.M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21, 1547–1549 (1996).
    [CrossRef] [PubMed]
  12. S. Guo and S. Albin, “Simple plane wave implementation for photonic crystal calculations,” Opt. Express 11, 167–175 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-2-167
    [CrossRef] [PubMed]

2005 (1)

2004 (3)

M. Chen and R. Yu, “Analysis of photonic bandgaps in modified honeycomb structures,” IEEE Photonics Technol. Lett. 16, 819–821 (2004).
[CrossRef]

L. Zhang and C. Yang, “Photonic crystal fibers with squeezed hexagonal lattice,” Opt. Express 12, 2371–2376 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-11-2371
[CrossRef] [PubMed]

M. Yan, X. Yu, P. Shum, C. Lu, and Y. Zhu, “Honeycomb photonic bandgap fiber with a modified core design,” IEEE Photonics Technol. Lett. 16, 2051–2053 (2004).
[CrossRef]

2003 (3)

1998 (2)

J. Broeng, S.E. Barkou, A. Bjarklev, J.C. Knight, T.A. Birks, and P.St.J. Russell, “Highly increased photonic band gaps in silica/air structures,” Opt. Commun. 156, 240–244 (1998).
[CrossRef]

J.C. Knight, J. Broeng, T.A. Birks, and P.St.J. Russell, “Photonic band gap guidance in optical fibers,” Science 282, 1476–1478 (1998).
[CrossRef] [PubMed]

1996 (1)

Albin, S.

Atkin, D.M.

Barkou, S.E.

J. Broeng, S.E. Barkou, A. Bjarklev, J.C. Knight, T.A. Birks, and P.St.J. Russell, “Highly increased photonic band gaps in silica/air structures,” Opt. Commun. 156, 240–244 (1998).
[CrossRef]

Birks, T.A.

J. Broeng, S.E. Barkou, A. Bjarklev, J.C. Knight, T.A. Birks, and P.St.J. Russell, “Highly increased photonic band gaps in silica/air structures,” Opt. Commun. 156, 240–244 (1998).
[CrossRef]

J.C. Knight, J. Broeng, T.A. Birks, and P.St.J. Russell, “Photonic band gap guidance in optical fibers,” Science 282, 1476–1478 (1998).
[CrossRef] [PubMed]

J.C. Knight, T.A. Birks, P.St.J. Russell, and D.M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21, 1547–1549 (1996).
[CrossRef] [PubMed]

Bjarklev, A.

J. Broeng, S.E. Barkou, A. Bjarklev, J.C. Knight, T.A. Birks, and P.St.J. Russell, “Highly increased photonic band gaps in silica/air structures,” Opt. Commun. 156, 240–244 (1998).
[CrossRef]

A. Bjarklev, J. Broeng, and A.S. Bjarklev, Photonic Crystal Fibres (Kluwer Academic Publishers, Boston, 2003).
[CrossRef]

Bjarklev, A.S.

A. Bjarklev, J. Broeng, and A.S. Bjarklev, Photonic Crystal Fibres (Kluwer Academic Publishers, Boston, 2003).
[CrossRef]

Broeng, J.

J. Broeng, S.E. Barkou, A. Bjarklev, J.C. Knight, T.A. Birks, and P.St.J. Russell, “Highly increased photonic band gaps in silica/air structures,” Opt. Commun. 156, 240–244 (1998).
[CrossRef]

J.C. Knight, J. Broeng, T.A. Birks, and P.St.J. Russell, “Photonic band gap guidance in optical fibers,” Science 282, 1476–1478 (1998).
[CrossRef] [PubMed]

A. Bjarklev, J. Broeng, and A.S. Bjarklev, Photonic Crystal Fibres (Kluwer Academic Publishers, Boston, 2003).
[CrossRef]

Chen, M.

M. Chen and R. Yu, “Analysis of photonic bandgaps in modified honeycomb structures,” IEEE Photonics Technol. Lett. 16, 819–821 (2004).
[CrossRef]

Guo, S.

Hu, J.

Joannopoulos, J. D.

J. D. Joannopoulos, R.D. Meade, and J.N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University Press, Princeton, 1995).

Knight, J.C.

J.C. Knight, “Photonic crystal fibres,” Nature 424, 847–851 (2003).
[CrossRef] [PubMed]

J.C. Knight, J. Broeng, T.A. Birks, and P.St.J. Russell, “Photonic band gap guidance in optical fibers,” Science 282, 1476–1478 (1998).
[CrossRef] [PubMed]

J. Broeng, S.E. Barkou, A. Bjarklev, J.C. Knight, T.A. Birks, and P.St.J. Russell, “Highly increased photonic band gaps in silica/air structures,” Opt. Commun. 156, 240–244 (1998).
[CrossRef]

J.C. Knight, T.A. Birks, P.St.J. Russell, and D.M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21, 1547–1549 (1996).
[CrossRef] [PubMed]

Lu, C.

M. Yan, X. Yu, P. Shum, C. Lu, and Y. Zhu, “Honeycomb photonic bandgap fiber with a modified core design,” IEEE Photonics Technol. Lett. 16, 2051–2053 (2004).
[CrossRef]

Meade, R.D.

J. D. Joannopoulos, R.D. Meade, and J.N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University Press, Princeton, 1995).

Russell, P.

P. Russell, “Photonic crystal fibers,” Science 299, 358–362 (2003).
[CrossRef] [PubMed]

Russell, P.St.J.

J. Broeng, S.E. Barkou, A. Bjarklev, J.C. Knight, T.A. Birks, and P.St.J. Russell, “Highly increased photonic band gaps in silica/air structures,” Opt. Commun. 156, 240–244 (1998).
[CrossRef]

J.C. Knight, J. Broeng, T.A. Birks, and P.St.J. Russell, “Photonic band gap guidance in optical fibers,” Science 282, 1476–1478 (1998).
[CrossRef] [PubMed]

J.C. Knight, T.A. Birks, P.St.J. Russell, and D.M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21, 1547–1549 (1996).
[CrossRef] [PubMed]

Shum, P.

M. Yan, P. Shum, and J. Hu, “Design of air-guiding honeycomb photonic bandgap fiber,” Opt. Lett. 30, 465–467 (2005).
[CrossRef] [PubMed]

M. Yan, X. Yu, P. Shum, C. Lu, and Y. Zhu, “Honeycomb photonic bandgap fiber with a modified core design,” IEEE Photonics Technol. Lett. 16, 2051–2053 (2004).
[CrossRef]

Winn, J.N.

J. D. Joannopoulos, R.D. Meade, and J.N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University Press, Princeton, 1995).

Yan, M.

M. Yan, P. Shum, and J. Hu, “Design of air-guiding honeycomb photonic bandgap fiber,” Opt. Lett. 30, 465–467 (2005).
[CrossRef] [PubMed]

M. Yan, X. Yu, P. Shum, C. Lu, and Y. Zhu, “Honeycomb photonic bandgap fiber with a modified core design,” IEEE Photonics Technol. Lett. 16, 2051–2053 (2004).
[CrossRef]

Yang, C.

Yu, R.

M. Chen and R. Yu, “Analysis of photonic bandgaps in modified honeycomb structures,” IEEE Photonics Technol. Lett. 16, 819–821 (2004).
[CrossRef]

Yu, X.

M. Yan, X. Yu, P. Shum, C. Lu, and Y. Zhu, “Honeycomb photonic bandgap fiber with a modified core design,” IEEE Photonics Technol. Lett. 16, 2051–2053 (2004).
[CrossRef]

Zhang, L.

Zhu, Y.

M. Yan, X. Yu, P. Shum, C. Lu, and Y. Zhu, “Honeycomb photonic bandgap fiber with a modified core design,” IEEE Photonics Technol. Lett. 16, 2051–2053 (2004).
[CrossRef]

IEEE Photonics Technol. Lett. (2)

M. Chen and R. Yu, “Analysis of photonic bandgaps in modified honeycomb structures,” IEEE Photonics Technol. Lett. 16, 819–821 (2004).
[CrossRef]

M. Yan, X. Yu, P. Shum, C. Lu, and Y. Zhu, “Honeycomb photonic bandgap fiber with a modified core design,” IEEE Photonics Technol. Lett. 16, 2051–2053 (2004).
[CrossRef]

Nature (1)

J.C. Knight, “Photonic crystal fibres,” Nature 424, 847–851 (2003).
[CrossRef] [PubMed]

Opt. Commun. (1)

J. Broeng, S.E. Barkou, A. Bjarklev, J.C. Knight, T.A. Birks, and P.St.J. Russell, “Highly increased photonic band gaps in silica/air structures,” Opt. Commun. 156, 240–244 (1998).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Science (2)

J.C. Knight, J. Broeng, T.A. Birks, and P.St.J. Russell, “Photonic band gap guidance in optical fibers,” Science 282, 1476–1478 (1998).
[CrossRef] [PubMed]

P. Russell, “Photonic crystal fibers,” Science 299, 358–362 (2003).
[CrossRef] [PubMed]

Other (2)

A. Bjarklev, J. Broeng, and A.S. Bjarklev, Photonic Crystal Fibres (Kluwer Academic Publishers, Boston, 2003).
[CrossRef]

J. D. Joannopoulos, R.D. Meade, and J.N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University Press, Princeton, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Schematic of an HPBF unit cell. Red circles represent the air holes of the HPBF with IAHs shown as blue circles. The diameters of the air holes and IAHs are D and Dint, respectively. The two yellow regions denote nodes, and a vein is shown in magenta.

Fig. 2.
Fig. 2.

Bandgap diagram for an HPBF of AFF f = 30% . The first four bandgaps are shown as the blue regions. The red line is the air line, and the grey area is the region where no light propagation is allowed.

Fig. 3.
Fig. 3.

Comparison of the relative bandgap sizes between the HPBFs with and without IAHs. The AFF of the HPBF without IAHs is 30%, and the AFF of IAHs is 5%.

Fig. 4.
Fig. 4.

The relative sizes of the primary and secondary gaps for an HBGF of f = 30% as a function of the AFF of the IAHs.

Fig. 5.
Fig. 5.

The relative sizes of the primary and secondary gaps for an HBGF of f = 50% as a function of the AFF of the IAHs.

Fig. 6.
Fig. 6.

The relative size of the primary gap for HPBFs with and without IAHs for fixed total AFFs. The dotted lines show the case of HPBFs without IAHs, while the sold lines represent the case of HPBFs with IAHs.

Fig. 7.
Fig. 7.

The relative size of the secondary gap for HBGFs with and without IAHs for fixed total AFFs. The dotted lines show the case of HPBFs without IAHs, while the sold lines represent the case of HPBFs with IAHs.

Fig. 8.
Fig. 8.

The relative size of the primary gap for HBGFs with and without IAHs for fixed total AFFs. The dotted lines show the case of HPBFs without IAHs, while the sold lines represent the case of HPBFs with IAHs.

Fig. 9.
Fig. 9.

The relative size of the secondary gap for HBGFs with and without IAHs for fixed total AFFs. The dotted lines show the case of HPBFs without IAHs, while the sold lines represent the case of HPBFs with IAHs.

Metrics