Abstract

By exploiting the broad region of anomalous group-velocity dispersion (GVD) and the large effective nonlinearity of photonic nanowires, we demonstrate soliton-effect self-compression of 70-fs pulses down to 6.8 fs. Under suitable conditions, simulations predict that self-compression down to single-cycle duration is possible.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Xu, C. Spielmann, A. Poppe, T. Brabec, F. Krausz, and T. W. Hansch, “Route to phase control of ultrashort light pulses,” Opt. Lett. 21, 2008–2010 (1996).
    [CrossRef] [PubMed]
  2. H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, and U. Keller, “Carrier-envelope offset phase control: A novel concept for absolute optical frequency measurement and ultrashort pulse generation,” Appl. Phys. B 69, 327–332 (1999).
    [CrossRef]
  3. M. Ivanov, P. B. Corkum, T. Zuo, and A. Bandrauk, “Routes to Control of Intense-Field Atomic Polarizability,” Phys. Rev. Lett. 74, 2933–2936 (1995).
    [CrossRef] [PubMed]
  4. I. P. Christov, M. M. Murnane, and H. C. Kapteyn, “High-harmonic generation of attosecond pulses in the ‘single-cycle’ regime,” Phys. Rev. Lett. 78, 1251–1254 (1997).
    [CrossRef]
  5. I. P. Christov, “Phase-dependent loss due to nonadiabatic ionization by sub-10-fs pulses,” Opt. Lett. 24, 1425–1427 (1999).
    [CrossRef]
  6. S. Chelkowski and A. D. Bandrauk, “Sensitivity of spatial photoelectron distributions to the absolute phase of an ultrashort intense laser pulse,” Phys. Rev. A 65, 061802 (2002).
    [CrossRef]
  7. L. Xu, C. Spielmann, F. Krausz, and R. Szipocs, “Ultrabroadband ring oscillator for sub-10-fs pulse generation,” Opt. Lett. 21, 1259–1261 (1996).
    [CrossRef] [PubMed]
  8. U. Morgner, F. Kartner, S. H. Cho, E. Chen, H. A. Haus, J. G. Fujimoto, E. P. Ippen, V. Scheuer, G. Angelow, and T. Tschudi, “Sub-two-cycle pulses from a Kerr-lens mode-locked Ti:sapphire laser,” Opt. Lett. 24, 411–413 (1999).
    [CrossRef]
  9. D. H. Sutter, G. Steinmeyer, L. Gallmann, N. Matuschek, F. Morier-Genoud, U. Keller, V. Scheuer, G. Angelow, and T. Tschudi, “Semiconductor saturable-absorber mirror-assisted Kerr-lens mode-locked Ti : sapphire laser producing pulses in the two-cycle regime,” Opt. Lett. 24, 631–633 (1999).
    [CrossRef]
  10. A. Baltuska, Z. Wei, M. S. Pshenichnikov, and D. A. Wiersma, “Optical pulse compression to 5 fs at a 1-MHz repetition rate,” Opt. Lett. 22, 102–104 (1997).
    [CrossRef] [PubMed]
  11. M. Nisoli, S. DeSilvestri, O. Svelto, R. Szipocs, K. Ferencz, C. Spielmann, S. Sartania, and F. Krausz, “Compression of high-energy laser pulses below 5 fs,” Opt. Lett. 22, 522–524 (1997).
    [CrossRef] [PubMed]
  12. N. Karasawa, L. M. Li, A. Suguro, H. Shigekawa, R. Morita, and M. Yamashita, “Optical pulse compression to 5.0 fs by use of only a spatial light modulator for phase compensation,” J. Opt. Soc. Am. B 18, 1742–1746 (2001).
    [CrossRef]
  13. B. Schenkel, J. Biegert, U. Keller, C. Vozzi, M. Nisoli, G. Sansone, S. Stagira, S. De Silvestri, and O. Svelto, “Generation of 3.8-fs pulses from adaptive compression of a cascaded hollow fiber supercontinuum,” Opt. Lett. 28, 1987–1989 (2003).
    [CrossRef] [PubMed]
  14. K. Yamane, Z. Zhang, K. Oka, R. Morita, M. Yamashita, and A. Suguro, “Optical pulse compression to 3.4fs in the monocycle region by feedback phase compensation,” Opt. Lett. 28, 2258–2260 (2003).
    [CrossRef] [PubMed]
  15. C.P. Hauri, W. Kornelis, F.W. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, and U. Keller, “Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation,” Appl. Phys. B 79, 673–677 (2004).
    [CrossRef]
  16. B. Schenkel, R. Paschotta, and U. Keller, “Pulse compression with supercontinuum generation in microstructure fibers,” J. Opt. Soc. Am. B 22, 687–693 (2005).
    [CrossRef]
  17. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press,1989).
  18. D. Akimov, M. Schmitt, R. Maksimenka, K. Dukel’skii, Y. Kondrat’ev, A. Khokhlov, V. She-vandin, W. Kiefer, and A. M. Zheltikov, “Supercontinuum generation in a multiple-submicron-core microstructure fiber: toward limiting waveguide enhancement of nonlinear-optical processes,” Appl. Phys. B 77, 299–305 (2003).
    [CrossRef]
  19. L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003).
    [CrossRef] [PubMed]
  20. A. M. Zheltikov, “The physical limit for the waveguide enhancement of nonlinear-optical processes,” Opt. Spectrosc. 95, 410–415 (2003).
    [CrossRef]
  21. L. M. Tong, J. Y. Lou, and E. Mazur, “Single-mode properties of sub-wavelength-diameter silica, and silicon wire waveguides,” Opt. Express 12, 1025–1035 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-6-1025.
    [CrossRef] [PubMed]
  22. E. C. Mägi, P. Steinvurzel, and B. J. Eggleton, “Tapered photonic crystal fibers,” Opt. Express 12, 776–784 (2004),http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-5-776.
    [CrossRef] [PubMed]
  23. S. Leon-Saval, T. Birks, W. Wadsworth, P. St. J. Russell, and M. Mason, “Supercon-tinuum generation in submicron fibre waveguides,” Opt. Express 12, 2864 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-13-2864.
    [CrossRef] [PubMed]
  24. M. A. Foster, K. D. Moll, and A. L. Gaeta, “Optimal waveguide dimensions for nonlinear interactions,” Opt. Express 12, 2880 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-13-2880.
    [CrossRef] [PubMed]
  25. M. A. Foster and A. L. Gaeta, “Ultra-low threshold supercontinuum generation in sub-wavelength waveguides,” Opt. Express 12, 3137 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-14-3137.
    [CrossRef] [PubMed]
  26. Y. Lize, E. C. Mägi, V. Ta’eed, J. Bolger, P. Steinvurzel, and B. Eggleton, “Microstructured optical fiber photonic wires with subwavelength core diameter,” Opt. Express 12, 3209 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-14-32097.
    [CrossRef] [PubMed]
  27. M. Law, D. J. Sirbuly, J. C. Johnson, J. Goldberger, R. J. Saykally, and P. Yang, “Nanoribbon waveguides for subwavelength photonics integration,” Science 305, 1269 (2004).
    [CrossRef] [PubMed]
  28. E. C. Mägi, H. C. Nguyen, and B. J. Eggleton, “Air-hole collapse and mode transitions in microstructured fiber photonic wires,” Opt. Express 13, 453 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-2-453.
    [CrossRef] [PubMed]
  29. M. A. Foster, J. M. Dudley, B. Kibler, Q. Cao, D. Lee, R. Trebino, and A. L. Gaeta, “Nonlinear pulse propagation and supercontinuum generation in photonic nanowires : experiment and simulation,” Appl. Phys. B,  81, 363–367 (2005).
    [CrossRef]
  30. T. Brabec and F. Krausz, “Nonlinear optical pulse propagation in the single-cycle regime,” Phys. Rev. Lett. 78, 3283 (1997).
    [CrossRef]
  31. A. L. Gaeta, “Nonlinear propagation and continuum generation in microstructured optical fibers,” Opt. Lett. 27, 924–926 (2002).
    [CrossRef]
  32. J. M. Dudley and S. Coen, “Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers,” Opt. Lett. 27, 1180–1182 (2002).
    [CrossRef]
  33. J. M. Dudley, X. Gu, L. Xu. M. Kimmel, E. Zeek, P. O’Shea, R. Trebino, S. Coen, and R. S. Windeler, “Cross-correlation frequency resolved optical gating analysis of broadband continuum generation in photonic crystal fiber: simulations and experiments,” Opt. Express 10, 1215 (2002), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-21-1215.
    [PubMed]

2005 (3)

2004 (8)

E. C. Mägi, P. Steinvurzel, and B. J. Eggleton, “Tapered photonic crystal fibers,” Opt. Express 12, 776–784 (2004),http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-5-776.
[CrossRef] [PubMed]

L. M. Tong, J. Y. Lou, and E. Mazur, “Single-mode properties of sub-wavelength-diameter silica, and silicon wire waveguides,” Opt. Express 12, 1025–1035 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-6-1025.
[CrossRef] [PubMed]

S. Leon-Saval, T. Birks, W. Wadsworth, P. St. J. Russell, and M. Mason, “Supercon-tinuum generation in submicron fibre waveguides,” Opt. Express 12, 2864 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-13-2864.
[CrossRef] [PubMed]

M. A. Foster, K. D. Moll, and A. L. Gaeta, “Optimal waveguide dimensions for nonlinear interactions,” Opt. Express 12, 2880 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-13-2880.
[CrossRef] [PubMed]

M. A. Foster and A. L. Gaeta, “Ultra-low threshold supercontinuum generation in sub-wavelength waveguides,” Opt. Express 12, 3137 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-14-3137.
[CrossRef] [PubMed]

Y. Lize, E. C. Mägi, V. Ta’eed, J. Bolger, P. Steinvurzel, and B. Eggleton, “Microstructured optical fiber photonic wires with subwavelength core diameter,” Opt. Express 12, 3209 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-14-32097.
[CrossRef] [PubMed]

C.P. Hauri, W. Kornelis, F.W. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, and U. Keller, “Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation,” Appl. Phys. B 79, 673–677 (2004).
[CrossRef]

M. Law, D. J. Sirbuly, J. C. Johnson, J. Goldberger, R. J. Saykally, and P. Yang, “Nanoribbon waveguides for subwavelength photonics integration,” Science 305, 1269 (2004).
[CrossRef] [PubMed]

2003 (5)

D. Akimov, M. Schmitt, R. Maksimenka, K. Dukel’skii, Y. Kondrat’ev, A. Khokhlov, V. She-vandin, W. Kiefer, and A. M. Zheltikov, “Supercontinuum generation in a multiple-submicron-core microstructure fiber: toward limiting waveguide enhancement of nonlinear-optical processes,” Appl. Phys. B 77, 299–305 (2003).
[CrossRef]

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003).
[CrossRef] [PubMed]

A. M. Zheltikov, “The physical limit for the waveguide enhancement of nonlinear-optical processes,” Opt. Spectrosc. 95, 410–415 (2003).
[CrossRef]

B. Schenkel, J. Biegert, U. Keller, C. Vozzi, M. Nisoli, G. Sansone, S. Stagira, S. De Silvestri, and O. Svelto, “Generation of 3.8-fs pulses from adaptive compression of a cascaded hollow fiber supercontinuum,” Opt. Lett. 28, 1987–1989 (2003).
[CrossRef] [PubMed]

K. Yamane, Z. Zhang, K. Oka, R. Morita, M. Yamashita, and A. Suguro, “Optical pulse compression to 3.4fs in the monocycle region by feedback phase compensation,” Opt. Lett. 28, 2258–2260 (2003).
[CrossRef] [PubMed]

2002 (4)

2001 (1)

1999 (4)

1997 (4)

T. Brabec and F. Krausz, “Nonlinear optical pulse propagation in the single-cycle regime,” Phys. Rev. Lett. 78, 3283 (1997).
[CrossRef]

A. Baltuska, Z. Wei, M. S. Pshenichnikov, and D. A. Wiersma, “Optical pulse compression to 5 fs at a 1-MHz repetition rate,” Opt. Lett. 22, 102–104 (1997).
[CrossRef] [PubMed]

M. Nisoli, S. DeSilvestri, O. Svelto, R. Szipocs, K. Ferencz, C. Spielmann, S. Sartania, and F. Krausz, “Compression of high-energy laser pulses below 5 fs,” Opt. Lett. 22, 522–524 (1997).
[CrossRef] [PubMed]

I. P. Christov, M. M. Murnane, and H. C. Kapteyn, “High-harmonic generation of attosecond pulses in the ‘single-cycle’ regime,” Phys. Rev. Lett. 78, 1251–1254 (1997).
[CrossRef]

1996 (2)

1995 (1)

M. Ivanov, P. B. Corkum, T. Zuo, and A. Bandrauk, “Routes to Control of Intense-Field Atomic Polarizability,” Phys. Rev. Lett. 74, 2933–2936 (1995).
[CrossRef] [PubMed]

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics (Academic Press,1989).

Akimov, D.

D. Akimov, M. Schmitt, R. Maksimenka, K. Dukel’skii, Y. Kondrat’ev, A. Khokhlov, V. She-vandin, W. Kiefer, and A. M. Zheltikov, “Supercontinuum generation in a multiple-submicron-core microstructure fiber: toward limiting waveguide enhancement of nonlinear-optical processes,” Appl. Phys. B 77, 299–305 (2003).
[CrossRef]

Angelow, G.

Ashcom, J. B.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003).
[CrossRef] [PubMed]

Baltuska, A.

Bandrauk, A.

M. Ivanov, P. B. Corkum, T. Zuo, and A. Bandrauk, “Routes to Control of Intense-Field Atomic Polarizability,” Phys. Rev. Lett. 74, 2933–2936 (1995).
[CrossRef] [PubMed]

Bandrauk, A. D.

S. Chelkowski and A. D. Bandrauk, “Sensitivity of spatial photoelectron distributions to the absolute phase of an ultrashort intense laser pulse,” Phys. Rev. A 65, 061802 (2002).
[CrossRef]

Biegert, J.

C.P. Hauri, W. Kornelis, F.W. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, and U. Keller, “Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation,” Appl. Phys. B 79, 673–677 (2004).
[CrossRef]

B. Schenkel, J. Biegert, U. Keller, C. Vozzi, M. Nisoli, G. Sansone, S. Stagira, S. De Silvestri, and O. Svelto, “Generation of 3.8-fs pulses from adaptive compression of a cascaded hollow fiber supercontinuum,” Opt. Lett. 28, 1987–1989 (2003).
[CrossRef] [PubMed]

Birks, T.

Bolger, J.

Brabec, T.

T. Brabec and F. Krausz, “Nonlinear optical pulse propagation in the single-cycle regime,” Phys. Rev. Lett. 78, 3283 (1997).
[CrossRef]

L. Xu, C. Spielmann, A. Poppe, T. Brabec, F. Krausz, and T. W. Hansch, “Route to phase control of ultrashort light pulses,” Opt. Lett. 21, 2008–2010 (1996).
[CrossRef] [PubMed]

Cao, Q.

M. A. Foster, J. M. Dudley, B. Kibler, Q. Cao, D. Lee, R. Trebino, and A. L. Gaeta, “Nonlinear pulse propagation and supercontinuum generation in photonic nanowires : experiment and simulation,” Appl. Phys. B,  81, 363–367 (2005).
[CrossRef]

Chelkowski, S.

S. Chelkowski and A. D. Bandrauk, “Sensitivity of spatial photoelectron distributions to the absolute phase of an ultrashort intense laser pulse,” Phys. Rev. A 65, 061802 (2002).
[CrossRef]

Chen, E.

Cho, S. H.

Christov, I. P.

I. P. Christov, “Phase-dependent loss due to nonadiabatic ionization by sub-10-fs pulses,” Opt. Lett. 24, 1425–1427 (1999).
[CrossRef]

I. P. Christov, M. M. Murnane, and H. C. Kapteyn, “High-harmonic generation of attosecond pulses in the ‘single-cycle’ regime,” Phys. Rev. Lett. 78, 1251–1254 (1997).
[CrossRef]

Coen, S.

Corkum, P. B.

M. Ivanov, P. B. Corkum, T. Zuo, and A. Bandrauk, “Routes to Control of Intense-Field Atomic Polarizability,” Phys. Rev. Lett. 74, 2933–2936 (1995).
[CrossRef] [PubMed]

Couairon, A.

C.P. Hauri, W. Kornelis, F.W. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, and U. Keller, “Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation,” Appl. Phys. B 79, 673–677 (2004).
[CrossRef]

De Silvestri, S.

DeSilvestri, S.

Dudley, J. M.

Dukel’skii, K.

D. Akimov, M. Schmitt, R. Maksimenka, K. Dukel’skii, Y. Kondrat’ev, A. Khokhlov, V. She-vandin, W. Kiefer, and A. M. Zheltikov, “Supercontinuum generation in a multiple-submicron-core microstructure fiber: toward limiting waveguide enhancement of nonlinear-optical processes,” Appl. Phys. B 77, 299–305 (2003).
[CrossRef]

Dunlop, A. E.

H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, and U. Keller, “Carrier-envelope offset phase control: A novel concept for absolute optical frequency measurement and ultrashort pulse generation,” Appl. Phys. B 69, 327–332 (1999).
[CrossRef]

Eggleton, B.

Eggleton, B. J.

Ferencz, K.

Foster, M. A.

Fujimoto, J. G.

Gaeta, A. L.

Gallmann, L.

Gattass, R. R.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003).
[CrossRef] [PubMed]

Goldberger, J.

M. Law, D. J. Sirbuly, J. C. Johnson, J. Goldberger, R. J. Saykally, and P. Yang, “Nanoribbon waveguides for subwavelength photonics integration,” Science 305, 1269 (2004).
[CrossRef] [PubMed]

Gu, X.

Hansch, T. W.

Hauri, C.P.

C.P. Hauri, W. Kornelis, F.W. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, and U. Keller, “Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation,” Appl. Phys. B 79, 673–677 (2004).
[CrossRef]

Haus, H. A.

He, S. L.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003).
[CrossRef] [PubMed]

Heinrich, A.

C.P. Hauri, W. Kornelis, F.W. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, and U. Keller, “Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation,” Appl. Phys. B 79, 673–677 (2004).
[CrossRef]

Helbing, F.W.

C.P. Hauri, W. Kornelis, F.W. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, and U. Keller, “Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation,” Appl. Phys. B 79, 673–677 (2004).
[CrossRef]

Ippen, E. P.

Ivanov, M.

M. Ivanov, P. B. Corkum, T. Zuo, and A. Bandrauk, “Routes to Control of Intense-Field Atomic Polarizability,” Phys. Rev. Lett. 74, 2933–2936 (1995).
[CrossRef] [PubMed]

Johnson, J. C.

M. Law, D. J. Sirbuly, J. C. Johnson, J. Goldberger, R. J. Saykally, and P. Yang, “Nanoribbon waveguides for subwavelength photonics integration,” Science 305, 1269 (2004).
[CrossRef] [PubMed]

Kapteyn, H. C.

I. P. Christov, M. M. Murnane, and H. C. Kapteyn, “High-harmonic generation of attosecond pulses in the ‘single-cycle’ regime,” Phys. Rev. Lett. 78, 1251–1254 (1997).
[CrossRef]

Karasawa, N.

Kartner, F.

Keller, U.

Khokhlov, A.

D. Akimov, M. Schmitt, R. Maksimenka, K. Dukel’skii, Y. Kondrat’ev, A. Khokhlov, V. She-vandin, W. Kiefer, and A. M. Zheltikov, “Supercontinuum generation in a multiple-submicron-core microstructure fiber: toward limiting waveguide enhancement of nonlinear-optical processes,” Appl. Phys. B 77, 299–305 (2003).
[CrossRef]

Kibler, B.

M. A. Foster, J. M. Dudley, B. Kibler, Q. Cao, D. Lee, R. Trebino, and A. L. Gaeta, “Nonlinear pulse propagation and supercontinuum generation in photonic nanowires : experiment and simulation,” Appl. Phys. B,  81, 363–367 (2005).
[CrossRef]

Kiefer, W.

D. Akimov, M. Schmitt, R. Maksimenka, K. Dukel’skii, Y. Kondrat’ev, A. Khokhlov, V. She-vandin, W. Kiefer, and A. M. Zheltikov, “Supercontinuum generation in a multiple-submicron-core microstructure fiber: toward limiting waveguide enhancement of nonlinear-optical processes,” Appl. Phys. B 77, 299–305 (2003).
[CrossRef]

Kimmel, L. Xu. M.

Kondrat’ev, Y.

D. Akimov, M. Schmitt, R. Maksimenka, K. Dukel’skii, Y. Kondrat’ev, A. Khokhlov, V. She-vandin, W. Kiefer, and A. M. Zheltikov, “Supercontinuum generation in a multiple-submicron-core microstructure fiber: toward limiting waveguide enhancement of nonlinear-optical processes,” Appl. Phys. B 77, 299–305 (2003).
[CrossRef]

Kornelis, W.

C.P. Hauri, W. Kornelis, F.W. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, and U. Keller, “Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation,” Appl. Phys. B 79, 673–677 (2004).
[CrossRef]

Krausz, F.

Law, M.

M. Law, D. J. Sirbuly, J. C. Johnson, J. Goldberger, R. J. Saykally, and P. Yang, “Nanoribbon waveguides for subwavelength photonics integration,” Science 305, 1269 (2004).
[CrossRef] [PubMed]

Lee, D.

M. A. Foster, J. M. Dudley, B. Kibler, Q. Cao, D. Lee, R. Trebino, and A. L. Gaeta, “Nonlinear pulse propagation and supercontinuum generation in photonic nanowires : experiment and simulation,” Appl. Phys. B,  81, 363–367 (2005).
[CrossRef]

Leon-Saval, S.

Li, L. M.

Lize, Y.

Lou, J. Y.

L. M. Tong, J. Y. Lou, and E. Mazur, “Single-mode properties of sub-wavelength-diameter silica, and silicon wire waveguides,” Opt. Express 12, 1025–1035 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-6-1025.
[CrossRef] [PubMed]

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003).
[CrossRef] [PubMed]

Mägi, E. C.

Maksimenka, R.

D. Akimov, M. Schmitt, R. Maksimenka, K. Dukel’skii, Y. Kondrat’ev, A. Khokhlov, V. She-vandin, W. Kiefer, and A. M. Zheltikov, “Supercontinuum generation in a multiple-submicron-core microstructure fiber: toward limiting waveguide enhancement of nonlinear-optical processes,” Appl. Phys. B 77, 299–305 (2003).
[CrossRef]

Mason, M.

Matuschek, N.

Maxwell, I.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003).
[CrossRef] [PubMed]

Mazur, E.

L. M. Tong, J. Y. Lou, and E. Mazur, “Single-mode properties of sub-wavelength-diameter silica, and silicon wire waveguides,” Opt. Express 12, 1025–1035 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-6-1025.
[CrossRef] [PubMed]

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003).
[CrossRef] [PubMed]

Moll, K. D.

Morgner, U.

Morier-Genoud, F.

Morita, R.

Murnane, M. M.

I. P. Christov, M. M. Murnane, and H. C. Kapteyn, “High-harmonic generation of attosecond pulses in the ‘single-cycle’ regime,” Phys. Rev. Lett. 78, 1251–1254 (1997).
[CrossRef]

Mysyrowicz, A.

C.P. Hauri, W. Kornelis, F.W. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, and U. Keller, “Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation,” Appl. Phys. B 79, 673–677 (2004).
[CrossRef]

Nguyen, H. C.

Nisoli, M.

O’Shea, P.

Oka, K.

Paschotta, R.

Poppe, A.

Pshenichnikov, M. S.

Russell, P. St. J.

Sansone, G.

Sartania, S.

Saykally, R. J.

M. Law, D. J. Sirbuly, J. C. Johnson, J. Goldberger, R. J. Saykally, and P. Yang, “Nanoribbon waveguides for subwavelength photonics integration,” Science 305, 1269 (2004).
[CrossRef] [PubMed]

Schenkel, B.

Scheuer, V.

Schmitt, M.

D. Akimov, M. Schmitt, R. Maksimenka, K. Dukel’skii, Y. Kondrat’ev, A. Khokhlov, V. She-vandin, W. Kiefer, and A. M. Zheltikov, “Supercontinuum generation in a multiple-submicron-core microstructure fiber: toward limiting waveguide enhancement of nonlinear-optical processes,” Appl. Phys. B 77, 299–305 (2003).
[CrossRef]

Shen, M. Y.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003).
[CrossRef] [PubMed]

She-vandin, V.

D. Akimov, M. Schmitt, R. Maksimenka, K. Dukel’skii, Y. Kondrat’ev, A. Khokhlov, V. She-vandin, W. Kiefer, and A. M. Zheltikov, “Supercontinuum generation in a multiple-submicron-core microstructure fiber: toward limiting waveguide enhancement of nonlinear-optical processes,” Appl. Phys. B 77, 299–305 (2003).
[CrossRef]

Shigekawa, H.

Sirbuly, D. J.

M. Law, D. J. Sirbuly, J. C. Johnson, J. Goldberger, R. J. Saykally, and P. Yang, “Nanoribbon waveguides for subwavelength photonics integration,” Science 305, 1269 (2004).
[CrossRef] [PubMed]

Spielmann, C.

Stagira, S.

Steinmeyer, G.

H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, and U. Keller, “Carrier-envelope offset phase control: A novel concept for absolute optical frequency measurement and ultrashort pulse generation,” Appl. Phys. B 69, 327–332 (1999).
[CrossRef]

D. H. Sutter, G. Steinmeyer, L. Gallmann, N. Matuschek, F. Morier-Genoud, U. Keller, V. Scheuer, G. Angelow, and T. Tschudi, “Semiconductor saturable-absorber mirror-assisted Kerr-lens mode-locked Ti : sapphire laser producing pulses in the two-cycle regime,” Opt. Lett. 24, 631–633 (1999).
[CrossRef]

Steinvurzel, P.

Stenger, J.

H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, and U. Keller, “Carrier-envelope offset phase control: A novel concept for absolute optical frequency measurement and ultrashort pulse generation,” Appl. Phys. B 69, 327–332 (1999).
[CrossRef]

Suguro, A.

Sutter, D. H.

H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, and U. Keller, “Carrier-envelope offset phase control: A novel concept for absolute optical frequency measurement and ultrashort pulse generation,” Appl. Phys. B 69, 327–332 (1999).
[CrossRef]

D. H. Sutter, G. Steinmeyer, L. Gallmann, N. Matuschek, F. Morier-Genoud, U. Keller, V. Scheuer, G. Angelow, and T. Tschudi, “Semiconductor saturable-absorber mirror-assisted Kerr-lens mode-locked Ti : sapphire laser producing pulses in the two-cycle regime,” Opt. Lett. 24, 631–633 (1999).
[CrossRef]

Svelto, O.

Szipocs, R.

Ta’eed, V.

Telle, H. R.

H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, and U. Keller, “Carrier-envelope offset phase control: A novel concept for absolute optical frequency measurement and ultrashort pulse generation,” Appl. Phys. B 69, 327–332 (1999).
[CrossRef]

Tong, L. M.

L. M. Tong, J. Y. Lou, and E. Mazur, “Single-mode properties of sub-wavelength-diameter silica, and silicon wire waveguides,” Opt. Express 12, 1025–1035 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-6-1025.
[CrossRef] [PubMed]

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003).
[CrossRef] [PubMed]

Trebino, R.

Tschudi, T.

Vozzi, C.

Wadsworth, W.

Wei, Z.

Wiersma, D. A.

Windeler, R. S.

Xu, L.

Yamane, K.

Yamashita, M.

Yang, P.

M. Law, D. J. Sirbuly, J. C. Johnson, J. Goldberger, R. J. Saykally, and P. Yang, “Nanoribbon waveguides for subwavelength photonics integration,” Science 305, 1269 (2004).
[CrossRef] [PubMed]

Zeek, E.

Zhang, Z.

Zheltikov, A. M.

D. Akimov, M. Schmitt, R. Maksimenka, K. Dukel’skii, Y. Kondrat’ev, A. Khokhlov, V. She-vandin, W. Kiefer, and A. M. Zheltikov, “Supercontinuum generation in a multiple-submicron-core microstructure fiber: toward limiting waveguide enhancement of nonlinear-optical processes,” Appl. Phys. B 77, 299–305 (2003).
[CrossRef]

A. M. Zheltikov, “The physical limit for the waveguide enhancement of nonlinear-optical processes,” Opt. Spectrosc. 95, 410–415 (2003).
[CrossRef]

Zuo, T.

M. Ivanov, P. B. Corkum, T. Zuo, and A. Bandrauk, “Routes to Control of Intense-Field Atomic Polarizability,” Phys. Rev. Lett. 74, 2933–2936 (1995).
[CrossRef] [PubMed]

Appl. Phys. B (4)

H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, and U. Keller, “Carrier-envelope offset phase control: A novel concept for absolute optical frequency measurement and ultrashort pulse generation,” Appl. Phys. B 69, 327–332 (1999).
[CrossRef]

D. Akimov, M. Schmitt, R. Maksimenka, K. Dukel’skii, Y. Kondrat’ev, A. Khokhlov, V. She-vandin, W. Kiefer, and A. M. Zheltikov, “Supercontinuum generation in a multiple-submicron-core microstructure fiber: toward limiting waveguide enhancement of nonlinear-optical processes,” Appl. Phys. B 77, 299–305 (2003).
[CrossRef]

C.P. Hauri, W. Kornelis, F.W. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, and U. Keller, “Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation,” Appl. Phys. B 79, 673–677 (2004).
[CrossRef]

M. A. Foster, J. M. Dudley, B. Kibler, Q. Cao, D. Lee, R. Trebino, and A. L. Gaeta, “Nonlinear pulse propagation and supercontinuum generation in photonic nanowires : experiment and simulation,” Appl. Phys. B,  81, 363–367 (2005).
[CrossRef]

J. Opt. Soc. Am. B (2)

Nature (1)

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003).
[CrossRef] [PubMed]

Opt. Express (8)

J. M. Dudley, X. Gu, L. Xu. M. Kimmel, E. Zeek, P. O’Shea, R. Trebino, S. Coen, and R. S. Windeler, “Cross-correlation frequency resolved optical gating analysis of broadband continuum generation in photonic crystal fiber: simulations and experiments,” Opt. Express 10, 1215 (2002), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-21-1215.
[PubMed]

E. C. Mägi, P. Steinvurzel, and B. J. Eggleton, “Tapered photonic crystal fibers,” Opt. Express 12, 776–784 (2004),http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-5-776.
[CrossRef] [PubMed]

L. M. Tong, J. Y. Lou, and E. Mazur, “Single-mode properties of sub-wavelength-diameter silica, and silicon wire waveguides,” Opt. Express 12, 1025–1035 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-6-1025.
[CrossRef] [PubMed]

S. Leon-Saval, T. Birks, W. Wadsworth, P. St. J. Russell, and M. Mason, “Supercon-tinuum generation in submicron fibre waveguides,” Opt. Express 12, 2864 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-13-2864.
[CrossRef] [PubMed]

M. A. Foster, K. D. Moll, and A. L. Gaeta, “Optimal waveguide dimensions for nonlinear interactions,” Opt. Express 12, 2880 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-13-2880.
[CrossRef] [PubMed]

M. A. Foster and A. L. Gaeta, “Ultra-low threshold supercontinuum generation in sub-wavelength waveguides,” Opt. Express 12, 3137 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-14-3137.
[CrossRef] [PubMed]

Y. Lize, E. C. Mägi, V. Ta’eed, J. Bolger, P. Steinvurzel, and B. Eggleton, “Microstructured optical fiber photonic wires with subwavelength core diameter,” Opt. Express 12, 3209 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-14-32097.
[CrossRef] [PubMed]

E. C. Mägi, H. C. Nguyen, and B. J. Eggleton, “Air-hole collapse and mode transitions in microstructured fiber photonic wires,” Opt. Express 13, 453 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-2-453.
[CrossRef] [PubMed]

Opt. Lett. (11)

B. Schenkel, J. Biegert, U. Keller, C. Vozzi, M. Nisoli, G. Sansone, S. Stagira, S. De Silvestri, and O. Svelto, “Generation of 3.8-fs pulses from adaptive compression of a cascaded hollow fiber supercontinuum,” Opt. Lett. 28, 1987–1989 (2003).
[CrossRef] [PubMed]

K. Yamane, Z. Zhang, K. Oka, R. Morita, M. Yamashita, and A. Suguro, “Optical pulse compression to 3.4fs in the monocycle region by feedback phase compensation,” Opt. Lett. 28, 2258–2260 (2003).
[CrossRef] [PubMed]

A. L. Gaeta, “Nonlinear propagation and continuum generation in microstructured optical fibers,” Opt. Lett. 27, 924–926 (2002).
[CrossRef]

J. M. Dudley and S. Coen, “Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers,” Opt. Lett. 27, 1180–1182 (2002).
[CrossRef]

A. Baltuska, Z. Wei, M. S. Pshenichnikov, and D. A. Wiersma, “Optical pulse compression to 5 fs at a 1-MHz repetition rate,” Opt. Lett. 22, 102–104 (1997).
[CrossRef] [PubMed]

M. Nisoli, S. DeSilvestri, O. Svelto, R. Szipocs, K. Ferencz, C. Spielmann, S. Sartania, and F. Krausz, “Compression of high-energy laser pulses below 5 fs,” Opt. Lett. 22, 522–524 (1997).
[CrossRef] [PubMed]

U. Morgner, F. Kartner, S. H. Cho, E. Chen, H. A. Haus, J. G. Fujimoto, E. P. Ippen, V. Scheuer, G. Angelow, and T. Tschudi, “Sub-two-cycle pulses from a Kerr-lens mode-locked Ti:sapphire laser,” Opt. Lett. 24, 411–413 (1999).
[CrossRef]

D. H. Sutter, G. Steinmeyer, L. Gallmann, N. Matuschek, F. Morier-Genoud, U. Keller, V. Scheuer, G. Angelow, and T. Tschudi, “Semiconductor saturable-absorber mirror-assisted Kerr-lens mode-locked Ti : sapphire laser producing pulses in the two-cycle regime,” Opt. Lett. 24, 631–633 (1999).
[CrossRef]

I. P. Christov, “Phase-dependent loss due to nonadiabatic ionization by sub-10-fs pulses,” Opt. Lett. 24, 1425–1427 (1999).
[CrossRef]

L. Xu, C. Spielmann, F. Krausz, and R. Szipocs, “Ultrabroadband ring oscillator for sub-10-fs pulse generation,” Opt. Lett. 21, 1259–1261 (1996).
[CrossRef] [PubMed]

L. Xu, C. Spielmann, A. Poppe, T. Brabec, F. Krausz, and T. W. Hansch, “Route to phase control of ultrashort light pulses,” Opt. Lett. 21, 2008–2010 (1996).
[CrossRef] [PubMed]

Opt. Spectrosc. (1)

A. M. Zheltikov, “The physical limit for the waveguide enhancement of nonlinear-optical processes,” Opt. Spectrosc. 95, 410–415 (2003).
[CrossRef]

Phys. Rev. A (1)

S. Chelkowski and A. D. Bandrauk, “Sensitivity of spatial photoelectron distributions to the absolute phase of an ultrashort intense laser pulse,” Phys. Rev. A 65, 061802 (2002).
[CrossRef]

Phys. Rev. Lett. (3)

M. Ivanov, P. B. Corkum, T. Zuo, and A. Bandrauk, “Routes to Control of Intense-Field Atomic Polarizability,” Phys. Rev. Lett. 74, 2933–2936 (1995).
[CrossRef] [PubMed]

I. P. Christov, M. M. Murnane, and H. C. Kapteyn, “High-harmonic generation of attosecond pulses in the ‘single-cycle’ regime,” Phys. Rev. Lett. 78, 1251–1254 (1997).
[CrossRef]

T. Brabec and F. Krausz, “Nonlinear optical pulse propagation in the single-cycle regime,” Phys. Rev. Lett. 78, 3283 (1997).
[CrossRef]

Science (1)

M. Law, D. J. Sirbuly, J. C. Johnson, J. Goldberger, R. J. Saykally, and P. Yang, “Nanoribbon waveguides for subwavelength photonics integration,” Science 305, 1269 (2004).
[CrossRef] [PubMed]

Other (1)

G. P. Agrawal, Nonlinear Fiber Optics (Academic Press,1989).

Supplementary Material (1)

» Media 1: AVI (1538 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Group-velocity dispersion of a circular glass nanowire in air for core diameters of 200 nm, 400 nm, 600 nm, and 800 nm.

Fig. 2.
Fig. 2.

Group-velocity dispersion of 800-nm and 1-μm diameter glass rods in air appropriate for compression of an 800-nm center wavelength input pulse.

Fig. 3.
Fig. 3.

Theoretically predicted (a) temporal and (b) spectral evolution of a 500-pJ and initially 30-fs Gaussian pulse undergoing soliton-effect compression in a 800-nm core diameter photonic nanowire at propagation distances of 501 μm, 582 μm, and 650 μm. (c) Spectrogram representation of the pulse at each of the corresponding propagation distances. (1.54 MB)

Fig. 4.
Fig. 4.

Peak intensity of 250-pJ, 375-pJ, 500-pJ, and 750-pJ pulses as a function of propagation distance inside an 800-nm core diameter photonic nanowire.

Fig. 5.
Fig. 5.

(a) Optical microscope image of 660-nm and 980-nm core diameter photonic nanowires with 2-mm lengths mounted on a 1-mm metal ridge. (b) Supercontinuum generated in a 2-mm long photonic nanowire.

Fig. 6.
Fig. 6.

Measured and simulated spectral evolution of supercontinuum generated as functions of average power of the mode-locked laser before the coupling objective (experiment) and inside the nanowire (simulation).

Fig. 7.
Fig. 7.

(a) Measured, retrieved, and simulated XFROG spectrogram of the compressed pulse exiting the nanowire. (b) Retrieved pulse shape and spectrum from the XFROG measurement.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

z opt L D = 0.32 N + 1.1 N 2 ,
F c = T in T comp ,
Q c = P comp F c ,

Metrics