Abstract

It is well known that vectorial analysis is essential to the study of high numerical aperture (NA) bright field scanning microscopes. We have constructed a high NA, vectorial model of a scanned Di.erential Interference Contrast (DIC) microscope which demonstrates that vectorial analysis is even more important to the study of this device. Our model is valid for coherent illumination and is able to model arbitrary scattering objects through the application of rigorous numerical methods for calculating electromagnetic scattering. We use our model to demonstrate how parameters such as sheer and bias a.ect imaging properties of both confocal and conventional scanning type DIC microscopes.

© 2005 Optical Society of America

PDF Article

References

  • View by:
  • |

  1. D. Lessor, J. Hartman, and R. Gordon, �??Quantitative surface topography determination by Nomarski reflection microscopy. I. Theory,�?? J. Opt. Soc. Am. 69, 357�??366 (1979).
  2. W. Galbraith, �??The image of a point of light in differential interference contrast microscopy: Computer simulation,�?? Microsc. Acta 85, 233�??254 (1982).
  3. T. Holmes and W. Levy, �??Signal-processing characteristics of differential interference-contrast microscopy.�?? Appl. Opt. 26, 3929�??3939 (1987).
  4. C. J. Cogswell and C. Sheppard, �??Confocal differential interference contrast (DIC) microscopy: including a theoretical analysis of conventional and confocal DIC imaging,�?? J. Microsc. 165, 81�??101 (1992).
  5. C. Preza, D. Snyder, and J. Conchello, �??Theoretical development and experimental evaluation of imaging models for differential-interference-contrast microscopy,�?? J. Opt. Soc. Am. A 16, 2185�??2199 (1999).
  6. C. Preza, �??Rotational-diversity phase estimation from differential-interference-contrast microscopy images.�?? J. Opt. Soc. Am. A 17, 415�??424 (2000).
  7. B. Richards and E. Wolf, �??Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system,�?? Proc. Roy. Soc. (London) A 253, 358�??379 (1959).
  8. M. Born and E. Wolf, Principles of Optics, seventh ed. (Cambridge University Press, Cambridge, 1999).
  9. P.Török , P. Higdon, and T.Wilson, �??Theory for confocal and conventional microscopes imaging small dielectric scatterers,�?? J. Mod. Opt. 45, 1681�??1698 (1998).
  10. P. Munro and P.Török , �??Vectorial, high-numerical-aperture study of phase-contrast microscopes,�?? J. Opt. Soc. Am. A 21, 1714�??1723 (2004).
    [CrossRef]
  11. P.Török, P. Higdon, and T. Wilson, �??On the general properties of polarising conventional and confocal microscopes,�?? Opt. Commun. 148(4-6), 300�??315 (1998).
    [CrossRef]
  12. A. Taflove and S. Hagness, Computational electrodynamics, second edition (Artech House, 2000).
  13. K. Yee, �??Numerical solution of initial boundary value problems involving maxwell�??s equations in isotropic media,�?? IEEE Trans. Antennas Propag. 14(3), 302�??307 (1966).
    [CrossRef]
  14. P. Török, P. Higdon, R. Juškaitis, and T. Wilson, �??Optimising the image contrast of conventional and confocal optical microscopes imaging finite sized spherical gold scatterers,�?? Opt. Commun. 155(4-6), 335�??341 (1998).
    [CrossRef]
  15. C. Bohren and D. Hu.man, Absorption and scattering of light by small particles (Wiley Interscience, 1983).
  16. G. Arfken, Mathematical Methods for Physicists, 3rd ed. (Academic Press, Boston, 1985).
  17. P. Török and C. Sheppard, High numerical aperture focusing and imaging (Adam Hilger, (to be published)).
  18. Munro and P. Török, �??Effect of detector size on optical resolution in phase contrast microscopes,�?? Opt. Lett. 29, 623�??625 (2004).
    [CrossRef]

Appl. Opt.

IEEE Trans. Antennas Propag.

K. Yee, �??Numerical solution of initial boundary value problems involving maxwell�??s equations in isotropic media,�?? IEEE Trans. Antennas Propag. 14(3), 302�??307 (1966).
[CrossRef]

J. Microsc.

C. J. Cogswell and C. Sheppard, �??Confocal differential interference contrast (DIC) microscopy: including a theoretical analysis of conventional and confocal DIC imaging,�?? J. Microsc. 165, 81�??101 (1992).

J. Mod. Opt.

P.Török , P. Higdon, and T.Wilson, �??Theory for confocal and conventional microscopes imaging small dielectric scatterers,�?? J. Mod. Opt. 45, 1681�??1698 (1998).

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

Microsc. Acta

W. Galbraith, �??The image of a point of light in differential interference contrast microscopy: Computer simulation,�?? Microsc. Acta 85, 233�??254 (1982).

Opt. Commun.

P. Török, P. Higdon, R. Juškaitis, and T. Wilson, �??Optimising the image contrast of conventional and confocal optical microscopes imaging finite sized spherical gold scatterers,�?? Opt. Commun. 155(4-6), 335�??341 (1998).
[CrossRef]

P.Török, P. Higdon, and T. Wilson, �??On the general properties of polarising conventional and confocal microscopes,�?? Opt. Commun. 148(4-6), 300�??315 (1998).
[CrossRef]

Opt. Lett.

Proc. Roy. Soc. (London) A

B. Richards and E. Wolf, �??Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system,�?? Proc. Roy. Soc. (London) A 253, 358�??379 (1959).

Other

M. Born and E. Wolf, Principles of Optics, seventh ed. (Cambridge University Press, Cambridge, 1999).

A. Taflove and S. Hagness, Computational electrodynamics, second edition (Artech House, 2000).

C. Bohren and D. Hu.man, Absorption and scattering of light by small particles (Wiley Interscience, 1983).

G. Arfken, Mathematical Methods for Physicists, 3rd ed. (Academic Press, Boston, 1985).

P. Török and C. Sheppard, High numerical aperture focusing and imaging (Adam Hilger, (to be published)).

Supplementary Material (2)

» Media 1: AVI (816 KB)     
» Media 2: AVI (629 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics