Abstract

In this paper, a tightly focused evanescent field produced by a total internal reflection objective lens under the illumination of a radially polarized beam generated using a single liquid crystal phase modulator is investigated. The field distributions have been directly mapped by a scanning near-field optical microscope. It is demonstrated both theoretically and experimentally that the introduction of radially polarized beam illumination combining with an annular beam illumination exhibits advantages in two aspects. On one hand, it corrects the focus elongation and splitting in a focused evanescent field associated with a linearly polarized beam. On the other hand, it significantly improves the lateral localization to approximately a quarter of the illumination wavelength, which is less than half of the size that is achievable under linearly polarized illumination.

© 2005 Optical Society of America

Full Article  |  PDF Article
Related Articles
Two-photon fluorescence scanning near-field microscopy based on a focused evanescent field under total internal reflection

James W. M. Chon, Min Gu, Craig Bullen, and Paul Mulvaney
Opt. Lett. 28(20) 1930-1932 (2003)

Focusing of doughnut laser beams by a high numerical-aperture objective in free space

Djenan Ganic, Xiaosong Gan, and Min Gu
Opt. Express 11(21) 2747-2752 (2003)

References

  • View by:
  • |
  • |
  • |

  1. J. J. Macklin, J. K. Trautman, T. D. Harris, and L. E. Brus, “Imaging and time-resolved spectroscopy of single molecules at an interface,” Science 272, 255–258 (1996).
    [Crossref]
  2. M. Tokunaga, K. Kitamura, K. Saito, A. H. Iwane, T. Yanagida, and Biochem. “Single molecule imaging of fluorophores and enzymatic reactions achieved by objective-type total internal reflection fluorescence microscopy,” Biophys. Res. Commun. 235, 47–53 (1997).
    [Crossref]
  3. B. Sick, B. Hecht, and L. Novotny, “Orientational imaging of single molecules by annular illumination,” Phys. Rev. Lett. 85, 4482–4485 (2000).
    [Crossref] [PubMed]
  4. N. Hayazawa, A. Tarun, Y. Inouye, and S. Kawata, “Near-field enhanced Raman spectroscopy using side illumination optics,” J. Appl. Phys. 92, 6983–6986 (2002).
    [Crossref]
  5. N. Hayazawa, Y. Inouye, and S. Kawata, “Evanescent field excitation and measurement of dye fluorescence in a metallic probe near-field scanning optical microscope,” J. Microsc. 194, 472–476 (1999).
    [Crossref]
  6. J. W. M. Chon and M. Gu, “Scanning total internal reflection fluorescence microscopy under one-photon and two-photon excitation: image formation,” Appl. Opt. 43, 1063–1071 (2004).
    [Crossref] [PubMed]
  7. M. Gu, J.-B. Haumonte, Y. M., J. W. M. Chon, and X. Gan, “Laser trapping and manipulation under focused evanescent wave illumination,” Appl. Phys. Lett. 84, 4236–4238 (2004).
    [Crossref]
  8. D. Ganic, X. Gan, and Min Gu, “Trapping force and optical lifting under focused evanescent wave illumination,” Opt. Express 12, 5533–5538 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-22-5533.
    [Crossref] [PubMed]
  9. E. J. Sanchez, L. Novotny, and X.S. Xie, “Near-field fluorescence microscopy based on two-photon excitation with metal tips,” Phys. Rev. Lett. 82, 4014–4017 (1999).
    [Crossref]
  10. S. Takahashi, T. Fujimoto, K. Kato, and I. Kojimay, “High resolution photon scanning tunneling microscope,” Nanotechnology 8, A54–A57 (1997).
    [Crossref]
  11. A. Bouhelier, M. R. Beversluis, and L. Novotny, “Near-field scattering of longitudinal fields,” Appl. Phys. Lett. 82, 4596–4598 (2003).
    [Crossref]
  12. B. Jia, X. Gan, and M. Gu, “Direct observation of a pure focused evanescent field of a high numerical aperture objective lens by scanning near-field optical microscopy,” Appl. Phys. Lett. 86, 131110, (2005).
    [Crossref]
  13. Q. Zhan and J. R. Leger, “Focus shaping using cylindrical vector beams,” Opt. Express 10, 324–331 (2002), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-7-324.
    [PubMed]
  14. R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91, 233901 (2003).
    [Crossref] [PubMed]
  15. A. V. Nesterov, V. G. Niziev, and V. P. Yakunin, “Generation of high-power radially polarized beam,” J. Phys. D Appl. Phys. 32, 2871–2875 (1999).
    [Crossref]
  16. A. A. Tovar, “Production and propagation of cylindrically polarized LaguerreGaussian laser beams,” J. Opt. Soc. Am. A,  15, 27052711 (1998).
    [Crossref]
  17. Z. Bomzon, G. Biener, V. Kleiner, and E. Hasman, “Radially and azimuthally polarized beams generated by space-variant dielectric subwavelength gratings,” Opt. Lett. 27, 285–287 (2002).
    [Crossref]
  18. S. C. Tidwell, D. H. Ford, and W. D. Kimura, “Generating radially polarized beams interferometrically,” Appl. Opt. 29, 2234–2239 (1990).
    [Crossref] [PubMed]
  19. K.S. Youngworth and T.G. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Express 7, 77–87 (2000), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-7-2-77.
    [Crossref] [PubMed]
  20. D. P. Biss and T. G. Brown, “Cylindrical vector beam focusing through a dielectric interface,” Opt. Express 9, 490–497 (2001), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-5-967.
    [Crossref] [PubMed]
  21. D. Loerke, B. Preitz, W. Stühmer, and M. Oheim, “Superresolution measurements by evanescent-wave excitation of fluorescence using variable beam incidence,” J. Biomed. Opt. 5, 23–30 (2000).
    [Crossref] [PubMed]

2005 (1)

B. Jia, X. Gan, and M. Gu, “Direct observation of a pure focused evanescent field of a high numerical aperture objective lens by scanning near-field optical microscopy,” Appl. Phys. Lett. 86, 131110, (2005).
[Crossref]

2004 (3)

2003 (2)

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91, 233901 (2003).
[Crossref] [PubMed]

A. Bouhelier, M. R. Beversluis, and L. Novotny, “Near-field scattering of longitudinal fields,” Appl. Phys. Lett. 82, 4596–4598 (2003).
[Crossref]

2002 (3)

2001 (1)

2000 (3)

K.S. Youngworth and T.G. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Express 7, 77–87 (2000), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-7-2-77.
[Crossref] [PubMed]

D. Loerke, B. Preitz, W. Stühmer, and M. Oheim, “Superresolution measurements by evanescent-wave excitation of fluorescence using variable beam incidence,” J. Biomed. Opt. 5, 23–30 (2000).
[Crossref] [PubMed]

B. Sick, B. Hecht, and L. Novotny, “Orientational imaging of single molecules by annular illumination,” Phys. Rev. Lett. 85, 4482–4485 (2000).
[Crossref] [PubMed]

1999 (3)

N. Hayazawa, Y. Inouye, and S. Kawata, “Evanescent field excitation and measurement of dye fluorescence in a metallic probe near-field scanning optical microscope,” J. Microsc. 194, 472–476 (1999).
[Crossref]

E. J. Sanchez, L. Novotny, and X.S. Xie, “Near-field fluorescence microscopy based on two-photon excitation with metal tips,” Phys. Rev. Lett. 82, 4014–4017 (1999).
[Crossref]

A. V. Nesterov, V. G. Niziev, and V. P. Yakunin, “Generation of high-power radially polarized beam,” J. Phys. D Appl. Phys. 32, 2871–2875 (1999).
[Crossref]

1998 (1)

A. A. Tovar, “Production and propagation of cylindrically polarized LaguerreGaussian laser beams,” J. Opt. Soc. Am. A,  15, 27052711 (1998).
[Crossref]

1997 (2)

S. Takahashi, T. Fujimoto, K. Kato, and I. Kojimay, “High resolution photon scanning tunneling microscope,” Nanotechnology 8, A54–A57 (1997).
[Crossref]

M. Tokunaga, K. Kitamura, K. Saito, A. H. Iwane, T. Yanagida, and Biochem. “Single molecule imaging of fluorophores and enzymatic reactions achieved by objective-type total internal reflection fluorescence microscopy,” Biophys. Res. Commun. 235, 47–53 (1997).
[Crossref]

1996 (1)

J. J. Macklin, J. K. Trautman, T. D. Harris, and L. E. Brus, “Imaging and time-resolved spectroscopy of single molecules at an interface,” Science 272, 255–258 (1996).
[Crossref]

1990 (1)

Beversluis, M. R.

A. Bouhelier, M. R. Beversluis, and L. Novotny, “Near-field scattering of longitudinal fields,” Appl. Phys. Lett. 82, 4596–4598 (2003).
[Crossref]

Biener, G.

Biochem,

M. Tokunaga, K. Kitamura, K. Saito, A. H. Iwane, T. Yanagida, and Biochem. “Single molecule imaging of fluorophores and enzymatic reactions achieved by objective-type total internal reflection fluorescence microscopy,” Biophys. Res. Commun. 235, 47–53 (1997).
[Crossref]

Biss, D. P.

Bomzon, Z.

Bouhelier, A.

A. Bouhelier, M. R. Beversluis, and L. Novotny, “Near-field scattering of longitudinal fields,” Appl. Phys. Lett. 82, 4596–4598 (2003).
[Crossref]

Brown, T. G.

Brown, T.G.

Brus, L. E.

J. J. Macklin, J. K. Trautman, T. D. Harris, and L. E. Brus, “Imaging and time-resolved spectroscopy of single molecules at an interface,” Science 272, 255–258 (1996).
[Crossref]

Chon, J. W. M.

M. Gu, J.-B. Haumonte, Y. M., J. W. M. Chon, and X. Gan, “Laser trapping and manipulation under focused evanescent wave illumination,” Appl. Phys. Lett. 84, 4236–4238 (2004).
[Crossref]

J. W. M. Chon and M. Gu, “Scanning total internal reflection fluorescence microscopy under one-photon and two-photon excitation: image formation,” Appl. Opt. 43, 1063–1071 (2004).
[Crossref] [PubMed]

Dorn, R.

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91, 233901 (2003).
[Crossref] [PubMed]

Ford, D. H.

Fujimoto, T.

S. Takahashi, T. Fujimoto, K. Kato, and I. Kojimay, “High resolution photon scanning tunneling microscope,” Nanotechnology 8, A54–A57 (1997).
[Crossref]

Gan, X.

B. Jia, X. Gan, and M. Gu, “Direct observation of a pure focused evanescent field of a high numerical aperture objective lens by scanning near-field optical microscopy,” Appl. Phys. Lett. 86, 131110, (2005).
[Crossref]

D. Ganic, X. Gan, and Min Gu, “Trapping force and optical lifting under focused evanescent wave illumination,” Opt. Express 12, 5533–5538 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-22-5533.
[Crossref] [PubMed]

M. Gu, J.-B. Haumonte, Y. M., J. W. M. Chon, and X. Gan, “Laser trapping and manipulation under focused evanescent wave illumination,” Appl. Phys. Lett. 84, 4236–4238 (2004).
[Crossref]

Ganic, D.

Gu, M.

B. Jia, X. Gan, and M. Gu, “Direct observation of a pure focused evanescent field of a high numerical aperture objective lens by scanning near-field optical microscopy,” Appl. Phys. Lett. 86, 131110, (2005).
[Crossref]

J. W. M. Chon and M. Gu, “Scanning total internal reflection fluorescence microscopy under one-photon and two-photon excitation: image formation,” Appl. Opt. 43, 1063–1071 (2004).
[Crossref] [PubMed]

M. Gu, J.-B. Haumonte, Y. M., J. W. M. Chon, and X. Gan, “Laser trapping and manipulation under focused evanescent wave illumination,” Appl. Phys. Lett. 84, 4236–4238 (2004).
[Crossref]

Gu, Min

Harris, T. D.

J. J. Macklin, J. K. Trautman, T. D. Harris, and L. E. Brus, “Imaging and time-resolved spectroscopy of single molecules at an interface,” Science 272, 255–258 (1996).
[Crossref]

Hasman, E.

Haumonte, J.-B.

M. Gu, J.-B. Haumonte, Y. M., J. W. M. Chon, and X. Gan, “Laser trapping and manipulation under focused evanescent wave illumination,” Appl. Phys. Lett. 84, 4236–4238 (2004).
[Crossref]

Hayazawa, N.

N. Hayazawa, A. Tarun, Y. Inouye, and S. Kawata, “Near-field enhanced Raman spectroscopy using side illumination optics,” J. Appl. Phys. 92, 6983–6986 (2002).
[Crossref]

N. Hayazawa, Y. Inouye, and S. Kawata, “Evanescent field excitation and measurement of dye fluorescence in a metallic probe near-field scanning optical microscope,” J. Microsc. 194, 472–476 (1999).
[Crossref]

Hecht, B.

B. Sick, B. Hecht, and L. Novotny, “Orientational imaging of single molecules by annular illumination,” Phys. Rev. Lett. 85, 4482–4485 (2000).
[Crossref] [PubMed]

Inouye, Y.

N. Hayazawa, A. Tarun, Y. Inouye, and S. Kawata, “Near-field enhanced Raman spectroscopy using side illumination optics,” J. Appl. Phys. 92, 6983–6986 (2002).
[Crossref]

N. Hayazawa, Y. Inouye, and S. Kawata, “Evanescent field excitation and measurement of dye fluorescence in a metallic probe near-field scanning optical microscope,” J. Microsc. 194, 472–476 (1999).
[Crossref]

Iwane, A. H.

M. Tokunaga, K. Kitamura, K. Saito, A. H. Iwane, T. Yanagida, and Biochem. “Single molecule imaging of fluorophores and enzymatic reactions achieved by objective-type total internal reflection fluorescence microscopy,” Biophys. Res. Commun. 235, 47–53 (1997).
[Crossref]

Jia, B.

B. Jia, X. Gan, and M. Gu, “Direct observation of a pure focused evanescent field of a high numerical aperture objective lens by scanning near-field optical microscopy,” Appl. Phys. Lett. 86, 131110, (2005).
[Crossref]

Kato, K.

S. Takahashi, T. Fujimoto, K. Kato, and I. Kojimay, “High resolution photon scanning tunneling microscope,” Nanotechnology 8, A54–A57 (1997).
[Crossref]

Kawata, S.

N. Hayazawa, A. Tarun, Y. Inouye, and S. Kawata, “Near-field enhanced Raman spectroscopy using side illumination optics,” J. Appl. Phys. 92, 6983–6986 (2002).
[Crossref]

N. Hayazawa, Y. Inouye, and S. Kawata, “Evanescent field excitation and measurement of dye fluorescence in a metallic probe near-field scanning optical microscope,” J. Microsc. 194, 472–476 (1999).
[Crossref]

Kimura, W. D.

Kitamura, K.

M. Tokunaga, K. Kitamura, K. Saito, A. H. Iwane, T. Yanagida, and Biochem. “Single molecule imaging of fluorophores and enzymatic reactions achieved by objective-type total internal reflection fluorescence microscopy,” Biophys. Res. Commun. 235, 47–53 (1997).
[Crossref]

Kleiner, V.

Kojimay, I.

S. Takahashi, T. Fujimoto, K. Kato, and I. Kojimay, “High resolution photon scanning tunneling microscope,” Nanotechnology 8, A54–A57 (1997).
[Crossref]

Leger, J. R.

Leuchs, G.

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91, 233901 (2003).
[Crossref] [PubMed]

Loerke, D.

D. Loerke, B. Preitz, W. Stühmer, and M. Oheim, “Superresolution measurements by evanescent-wave excitation of fluorescence using variable beam incidence,” J. Biomed. Opt. 5, 23–30 (2000).
[Crossref] [PubMed]

M., Y.

M. Gu, J.-B. Haumonte, Y. M., J. W. M. Chon, and X. Gan, “Laser trapping and manipulation under focused evanescent wave illumination,” Appl. Phys. Lett. 84, 4236–4238 (2004).
[Crossref]

Macklin, J. J.

J. J. Macklin, J. K. Trautman, T. D. Harris, and L. E. Brus, “Imaging and time-resolved spectroscopy of single molecules at an interface,” Science 272, 255–258 (1996).
[Crossref]

Nesterov, A. V.

A. V. Nesterov, V. G. Niziev, and V. P. Yakunin, “Generation of high-power radially polarized beam,” J. Phys. D Appl. Phys. 32, 2871–2875 (1999).
[Crossref]

Niziev, V. G.

A. V. Nesterov, V. G. Niziev, and V. P. Yakunin, “Generation of high-power radially polarized beam,” J. Phys. D Appl. Phys. 32, 2871–2875 (1999).
[Crossref]

Novotny, L.

A. Bouhelier, M. R. Beversluis, and L. Novotny, “Near-field scattering of longitudinal fields,” Appl. Phys. Lett. 82, 4596–4598 (2003).
[Crossref]

B. Sick, B. Hecht, and L. Novotny, “Orientational imaging of single molecules by annular illumination,” Phys. Rev. Lett. 85, 4482–4485 (2000).
[Crossref] [PubMed]

E. J. Sanchez, L. Novotny, and X.S. Xie, “Near-field fluorescence microscopy based on two-photon excitation with metal tips,” Phys. Rev. Lett. 82, 4014–4017 (1999).
[Crossref]

Oheim, M.

D. Loerke, B. Preitz, W. Stühmer, and M. Oheim, “Superresolution measurements by evanescent-wave excitation of fluorescence using variable beam incidence,” J. Biomed. Opt. 5, 23–30 (2000).
[Crossref] [PubMed]

Preitz, B.

D. Loerke, B. Preitz, W. Stühmer, and M. Oheim, “Superresolution measurements by evanescent-wave excitation of fluorescence using variable beam incidence,” J. Biomed. Opt. 5, 23–30 (2000).
[Crossref] [PubMed]

Quabis, S.

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91, 233901 (2003).
[Crossref] [PubMed]

Saito, K.

M. Tokunaga, K. Kitamura, K. Saito, A. H. Iwane, T. Yanagida, and Biochem. “Single molecule imaging of fluorophores and enzymatic reactions achieved by objective-type total internal reflection fluorescence microscopy,” Biophys. Res. Commun. 235, 47–53 (1997).
[Crossref]

Sanchez, E. J.

E. J. Sanchez, L. Novotny, and X.S. Xie, “Near-field fluorescence microscopy based on two-photon excitation with metal tips,” Phys. Rev. Lett. 82, 4014–4017 (1999).
[Crossref]

Sick, B.

B. Sick, B. Hecht, and L. Novotny, “Orientational imaging of single molecules by annular illumination,” Phys. Rev. Lett. 85, 4482–4485 (2000).
[Crossref] [PubMed]

Stühmer, W.

D. Loerke, B. Preitz, W. Stühmer, and M. Oheim, “Superresolution measurements by evanescent-wave excitation of fluorescence using variable beam incidence,” J. Biomed. Opt. 5, 23–30 (2000).
[Crossref] [PubMed]

Takahashi, S.

S. Takahashi, T. Fujimoto, K. Kato, and I. Kojimay, “High resolution photon scanning tunneling microscope,” Nanotechnology 8, A54–A57 (1997).
[Crossref]

Tarun, A.

N. Hayazawa, A. Tarun, Y. Inouye, and S. Kawata, “Near-field enhanced Raman spectroscopy using side illumination optics,” J. Appl. Phys. 92, 6983–6986 (2002).
[Crossref]

Tidwell, S. C.

Tokunaga, M.

M. Tokunaga, K. Kitamura, K. Saito, A. H. Iwane, T. Yanagida, and Biochem. “Single molecule imaging of fluorophores and enzymatic reactions achieved by objective-type total internal reflection fluorescence microscopy,” Biophys. Res. Commun. 235, 47–53 (1997).
[Crossref]

Tovar, A. A.

A. A. Tovar, “Production and propagation of cylindrically polarized LaguerreGaussian laser beams,” J. Opt. Soc. Am. A,  15, 27052711 (1998).
[Crossref]

Trautman, J. K.

J. J. Macklin, J. K. Trautman, T. D. Harris, and L. E. Brus, “Imaging and time-resolved spectroscopy of single molecules at an interface,” Science 272, 255–258 (1996).
[Crossref]

Xie, X.S.

E. J. Sanchez, L. Novotny, and X.S. Xie, “Near-field fluorescence microscopy based on two-photon excitation with metal tips,” Phys. Rev. Lett. 82, 4014–4017 (1999).
[Crossref]

Yakunin, V. P.

A. V. Nesterov, V. G. Niziev, and V. P. Yakunin, “Generation of high-power radially polarized beam,” J. Phys. D Appl. Phys. 32, 2871–2875 (1999).
[Crossref]

Yanagida, T.

M. Tokunaga, K. Kitamura, K. Saito, A. H. Iwane, T. Yanagida, and Biochem. “Single molecule imaging of fluorophores and enzymatic reactions achieved by objective-type total internal reflection fluorescence microscopy,” Biophys. Res. Commun. 235, 47–53 (1997).
[Crossref]

Youngworth, K.S.

Zhan, Q.

Appl. Opt. (2)

Appl. Phys. Lett. (3)

M. Gu, J.-B. Haumonte, Y. M., J. W. M. Chon, and X. Gan, “Laser trapping and manipulation under focused evanescent wave illumination,” Appl. Phys. Lett. 84, 4236–4238 (2004).
[Crossref]

A. Bouhelier, M. R. Beversluis, and L. Novotny, “Near-field scattering of longitudinal fields,” Appl. Phys. Lett. 82, 4596–4598 (2003).
[Crossref]

B. Jia, X. Gan, and M. Gu, “Direct observation of a pure focused evanescent field of a high numerical aperture objective lens by scanning near-field optical microscopy,” Appl. Phys. Lett. 86, 131110, (2005).
[Crossref]

Biophys. Res. Commun. (1)

M. Tokunaga, K. Kitamura, K. Saito, A. H. Iwane, T. Yanagida, and Biochem. “Single molecule imaging of fluorophores and enzymatic reactions achieved by objective-type total internal reflection fluorescence microscopy,” Biophys. Res. Commun. 235, 47–53 (1997).
[Crossref]

J. Appl. Phys. (1)

N. Hayazawa, A. Tarun, Y. Inouye, and S. Kawata, “Near-field enhanced Raman spectroscopy using side illumination optics,” J. Appl. Phys. 92, 6983–6986 (2002).
[Crossref]

J. Biomed. Opt. (1)

D. Loerke, B. Preitz, W. Stühmer, and M. Oheim, “Superresolution measurements by evanescent-wave excitation of fluorescence using variable beam incidence,” J. Biomed. Opt. 5, 23–30 (2000).
[Crossref] [PubMed]

J. Microsc. (1)

N. Hayazawa, Y. Inouye, and S. Kawata, “Evanescent field excitation and measurement of dye fluorescence in a metallic probe near-field scanning optical microscope,” J. Microsc. 194, 472–476 (1999).
[Crossref]

J. Opt. Soc. Am. A (1)

A. A. Tovar, “Production and propagation of cylindrically polarized LaguerreGaussian laser beams,” J. Opt. Soc. Am. A,  15, 27052711 (1998).
[Crossref]

J. Phys. D Appl. Phys. (1)

A. V. Nesterov, V. G. Niziev, and V. P. Yakunin, “Generation of high-power radially polarized beam,” J. Phys. D Appl. Phys. 32, 2871–2875 (1999).
[Crossref]

Nanotechnology (1)

S. Takahashi, T. Fujimoto, K. Kato, and I. Kojimay, “High resolution photon scanning tunneling microscope,” Nanotechnology 8, A54–A57 (1997).
[Crossref]

Opt. Express (4)

Opt. Lett. (1)

Phys. Rev. Lett. (3)

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91, 233901 (2003).
[Crossref] [PubMed]

E. J. Sanchez, L. Novotny, and X.S. Xie, “Near-field fluorescence microscopy based on two-photon excitation with metal tips,” Phys. Rev. Lett. 82, 4014–4017 (1999).
[Crossref]

B. Sick, B. Hecht, and L. Novotny, “Orientational imaging of single molecules by annular illumination,” Phys. Rev. Lett. 85, 4482–4485 (2000).
[Crossref] [PubMed]

Science (1)

J. J. Macklin, J. K. Trautman, T. D. Harris, and L. E. Brus, “Imaging and time-resolved spectroscopy of single molecules at an interface,” Science 272, 255–258 (1996).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

A schematic diagram of the experimental setup for mapping a tightly focused field of a high NA TIR objective illuminated by a radially polarized beam generated by combining two opposite hand circularly polarized LG beams with opposite topological charges interferometrically under an annular illumination using a SNOM. QWP: quarter wave plate, P: polarizer, BE: beam expansion system, D: diaphragm, BS: beam splitter, M: mirror, OBJ: objective, NA=1.65, 100×, OBS: obstruction. (a), (b) Phase patterns loaded to LCD to produce LG beams with opposite topological charges. (c) The generated radially polarized beam.

Fig. 2.
Fig. 2.

Comparison of the theoretical predicted and the measured cross-sections of the field intensity distribution in the focal region of the objective under the illumination of a linearly polarized beam and a radially polarized beam. (a) an experimental measurement of a linearly polarized beam, (b) a theoretical prediction of a linearly polarized beam (c) an experimental measurement of a radially polarized beam (d) a theoretical prediction of a radially polarized beam. The arrow indicates the incident polarization direction for a linearly polarized beam. Theo: theory, Exp: experiment.

Fig. 3.
Fig. 3.

Measured intensity distributions (normalized by the maximum intensity value) in the focal region of an unobstructed TIR objective illuminated by a radially polarized beam at the horizontal planes of different distances d to the glass-air interface: (a) at interface, (b) d = 20 nm, (c) d = 70 nm, (d) d = 100 nm, (e) d = 200 nm, (f) d = 300 nm. Scale bar: 500nm.

Fig. 4.
Fig. 4.

Experimental and theoretical intensity decay of a purely evanescent focus under the illumination of a radially polarized beam as a function of the tip-sample distance for ε=0.8. Inset (a) focal intensity distribution of a linearly polarized beam, insets (b)-(e) field intensity distributions at the horizontal planes of different distances d to the glass-air interface: (b) d = 10 nm, (c) d = 20 nm, (d) d = 40 nm, (e) d = 130 nm. Scale bar: 500 nm. The arrow in inset (a) indicates the incident polarization direction for a linearly polarized beam.

Fig. 5.
Fig. 5.

Comparison of the measured FWHM of the focal spot under unobstructed (ε = 0) and obstructed (ε = 0.8) radial polarization illumination to the theoretical FWHM of the total field.

Metrics