Abstract

Bragg Gratings (BGs) have been written within either H2-loaded or UV-hypersensitized phosphorous-germanium co-doped silica planar waveguides through exposure to light at 248 nm. The stability of these BGs has been investigated by means of isochronal annealing experiments. It appears that the stability of both the modulation and the Bragg wavelength is higher in the hydrogenated waveguides than in the hypersensitized counterparts. Moreover, in the case of BGs in the UV-hypersensitized waveguides, the rate of the strength decay depends on the initial amplitude of the refractive index modulation whereas no significant difference could be observed in H2-loaded waveguides. It is shown that the master-curve formalism can be used to predicting an isothermal decay of both reflectivity and Bragg wavelengths of BGs written in the H2-loaded waveguides. This conclusion is illustrated by the fairly nice agreement that exits between the results of an isothermal annealing experiment and those predicted by use of the master-curve.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Yamada, A. Takagi, I. Ogawa, M. Kawachi, and M. Kobayashi, “Silica based-optical waveguide on terraced silicon substrate as hybrid integration platform,” Electron. Lett. 29, 444–446 (1993).
    [Crossref]
  2. Y. Hibino, T. Kitagawa, K.O. Hill, F. Bilodeau, B. Malo, J. Albert, and D.C. Johnson, “Wavelength division multiplexer with photoinduced Bragg gratings fabricated in a planar-ligthwave-waveguide-type asymmetric Mach-Zender interferometer on Si,” IEEE Photonics Technol. Lett. 8, 84–86 (1996).
    [Crossref]
  3. C.K. Madsen, L. Adams, R. Scotti, A. Bruce, M. Capuzzo, L. Gomez, and E. Laskowski, “A multi-port add/drop router using UV-induced gratings in planar waveguides,” Optical Fiber Communication Conference (OFC’99), paper ThH3 (1999).
  4. R.M. Atkins, P.J. Lemaire, T. Erdogan, and V. Mizrahi, “Mechanisms of enhanced UV photosensitivity via hydrogen loading in germanosilicate glasses,” Electron. Lett. 29, 1234–1235 (1993).
    [Crossref]
  5. T.A. Strasser, T. Erdogan, A.E. White, V. Mizrahi, and P.J. Lemaire, “Ultraviolet laser fabrication of strong, nearly polarization-independent Bragg reflectors in germanium-doped silica waveguides on silica substrates,” Appl. Phys. Lett. 65, 3308–3310 (1994).
    [Crossref]
  6. G.E. Kohnke, D.W. Nightingale, P.G. Wigley, and C.R. Pollock, “Photosensitization of optical fiber by UV exposure of hydrogen loaded fiber,” Optical Fiber Communication Conference (OFC’99), paper PD20 (1999).
  7. J. Canning, K. Sommer, and M. Englund, “Fibre gratings for high temperature sensor applications,” Meas. Sci. Technol. 12, 824–828 (2001).
    [Crossref]
  8. H. Patrick, S.L. Gilbert, A. Lidgard, and M.D. Gallagher, “Annealing of Bragg gratings in hydrogen-loaded optical fiber,” J. Appl. Phys. 78, 2940–2945 (1995).
    [Crossref]
  9. S. Kannan, J.Z.Y. Gus, and P.J. Lemaire, “Thermal stability analysis of UV-induced fiber Bragg gratings,” J. Lightwave Technol. 15, 1478–1483 (1997).
    [Crossref]
  10. M. Äslund and J. Canning, “Annealing properties of gratings written into UV-presensitized hydrogen-outdiffused optical fiber,” Opt. Lett. 25,692–694 (2000).
    [Crossref]
  11. B.O. Guan, H.Y. Tam, X.M. Tao, and X.Y. Dong, “Highly stable fiber Bragg gratings written in hydrogen-loaded fiber,” IEEE Photonics Technol. Lett. 12, 1349–1351 (2000).
    [Crossref]
  12. M. Kawachi, M. Yasu, and T. Edahiro, “Fabrication of SiO-TiO glass planar optical waveguides by flame hydrolysis deposition,” Electron. Lett. 19, 583–584 (1983).
    [Crossref]
  13. D. Razafimahatratra, P. Niay, M. Douay, B. Poumellec, and I. Riant, “Comparison of isochronal and isothermal decays of Bragg gratings written through continuous-wave exposure of an unloaded germanosilicate fiber,” Appl. Opt. 39, 1924–1933 (2000).
    [Crossref]
  14. D.K.W. Lam and B.K. Garside, “Characterization of single-mode optical fiber filters,” Appl. Opt. 20, 440–445 (1981).
    [Crossref] [PubMed]
  15. B. Leconte PhD. thesis n°2379, University of Lille, France, available on request (1998).
  16. D. Ramecourt, P. Niay, P. Bernage, I. Riant, and M. Douay, “Growth of strength of Bragg gratings written in H2-loaded telecommunication fibre during CW UV post-exposure,” Electron. Lett. 35, 329–331 (1999).
    [Crossref]
  17. T. Erdogan, V. Mizrahi, and P. Monroe, “Decay of ultraviolet-induced fiber Bragg gratings,” J. Appl. Phys. 76, 73–80 (1994).
    [Crossref]
  18. B. Poumellec, “Links between writing and erasure (or stability) of Bragg gratings in disordered media,” J. Non-Cryst. Sol. 239, 108–115 (1998).
    [Crossref]
  19. Q. Wang, A. Hidayat, P. Niay, and M. Douay, “Influence of blanket postexposure on the thermal stability of the spectral characteristics of gratings written in a telecommunication fiber using light at 193 nm,” J. Lightwave Technol. 18, 1078–1083 (2000).
    [Crossref]
  20. B. Malo, J. Albert, F. Bilodeau, T. Kitagawa, D.C. Johnson, K.O. Hill, K. Hattori, Y. Hibino, and S. Gujrathi, “Photosensitivity in phosphorous-doped silica glass and optical waveguides,” Appl. Phys. Lett. 65, 394–396 (1994).
    [Crossref]

2001 (1)

J. Canning, K. Sommer, and M. Englund, “Fibre gratings for high temperature sensor applications,” Meas. Sci. Technol. 12, 824–828 (2001).
[Crossref]

2000 (4)

1999 (1)

D. Ramecourt, P. Niay, P. Bernage, I. Riant, and M. Douay, “Growth of strength of Bragg gratings written in H2-loaded telecommunication fibre during CW UV post-exposure,” Electron. Lett. 35, 329–331 (1999).
[Crossref]

1998 (1)

B. Poumellec, “Links between writing and erasure (or stability) of Bragg gratings in disordered media,” J. Non-Cryst. Sol. 239, 108–115 (1998).
[Crossref]

1997 (1)

S. Kannan, J.Z.Y. Gus, and P.J. Lemaire, “Thermal stability analysis of UV-induced fiber Bragg gratings,” J. Lightwave Technol. 15, 1478–1483 (1997).
[Crossref]

1996 (1)

Y. Hibino, T. Kitagawa, K.O. Hill, F. Bilodeau, B. Malo, J. Albert, and D.C. Johnson, “Wavelength division multiplexer with photoinduced Bragg gratings fabricated in a planar-ligthwave-waveguide-type asymmetric Mach-Zender interferometer on Si,” IEEE Photonics Technol. Lett. 8, 84–86 (1996).
[Crossref]

1995 (1)

H. Patrick, S.L. Gilbert, A. Lidgard, and M.D. Gallagher, “Annealing of Bragg gratings in hydrogen-loaded optical fiber,” J. Appl. Phys. 78, 2940–2945 (1995).
[Crossref]

1994 (3)

T.A. Strasser, T. Erdogan, A.E. White, V. Mizrahi, and P.J. Lemaire, “Ultraviolet laser fabrication of strong, nearly polarization-independent Bragg reflectors in germanium-doped silica waveguides on silica substrates,” Appl. Phys. Lett. 65, 3308–3310 (1994).
[Crossref]

B. Malo, J. Albert, F. Bilodeau, T. Kitagawa, D.C. Johnson, K.O. Hill, K. Hattori, Y. Hibino, and S. Gujrathi, “Photosensitivity in phosphorous-doped silica glass and optical waveguides,” Appl. Phys. Lett. 65, 394–396 (1994).
[Crossref]

T. Erdogan, V. Mizrahi, and P. Monroe, “Decay of ultraviolet-induced fiber Bragg gratings,” J. Appl. Phys. 76, 73–80 (1994).
[Crossref]

1993 (2)

Y. Yamada, A. Takagi, I. Ogawa, M. Kawachi, and M. Kobayashi, “Silica based-optical waveguide on terraced silicon substrate as hybrid integration platform,” Electron. Lett. 29, 444–446 (1993).
[Crossref]

R.M. Atkins, P.J. Lemaire, T. Erdogan, and V. Mizrahi, “Mechanisms of enhanced UV photosensitivity via hydrogen loading in germanosilicate glasses,” Electron. Lett. 29, 1234–1235 (1993).
[Crossref]

1983 (1)

M. Kawachi, M. Yasu, and T. Edahiro, “Fabrication of SiO-TiO glass planar optical waveguides by flame hydrolysis deposition,” Electron. Lett. 19, 583–584 (1983).
[Crossref]

1981 (1)

Adams, L.

C.K. Madsen, L. Adams, R. Scotti, A. Bruce, M. Capuzzo, L. Gomez, and E. Laskowski, “A multi-port add/drop router using UV-induced gratings in planar waveguides,” Optical Fiber Communication Conference (OFC’99), paper ThH3 (1999).

Albert, J.

Y. Hibino, T. Kitagawa, K.O. Hill, F. Bilodeau, B. Malo, J. Albert, and D.C. Johnson, “Wavelength division multiplexer with photoinduced Bragg gratings fabricated in a planar-ligthwave-waveguide-type asymmetric Mach-Zender interferometer on Si,” IEEE Photonics Technol. Lett. 8, 84–86 (1996).
[Crossref]

B. Malo, J. Albert, F. Bilodeau, T. Kitagawa, D.C. Johnson, K.O. Hill, K. Hattori, Y. Hibino, and S. Gujrathi, “Photosensitivity in phosphorous-doped silica glass and optical waveguides,” Appl. Phys. Lett. 65, 394–396 (1994).
[Crossref]

Äslund, M.

Atkins, R.M.

R.M. Atkins, P.J. Lemaire, T. Erdogan, and V. Mizrahi, “Mechanisms of enhanced UV photosensitivity via hydrogen loading in germanosilicate glasses,” Electron. Lett. 29, 1234–1235 (1993).
[Crossref]

Bernage, P.

D. Ramecourt, P. Niay, P. Bernage, I. Riant, and M. Douay, “Growth of strength of Bragg gratings written in H2-loaded telecommunication fibre during CW UV post-exposure,” Electron. Lett. 35, 329–331 (1999).
[Crossref]

Bilodeau, F.

Y. Hibino, T. Kitagawa, K.O. Hill, F. Bilodeau, B. Malo, J. Albert, and D.C. Johnson, “Wavelength division multiplexer with photoinduced Bragg gratings fabricated in a planar-ligthwave-waveguide-type asymmetric Mach-Zender interferometer on Si,” IEEE Photonics Technol. Lett. 8, 84–86 (1996).
[Crossref]

B. Malo, J. Albert, F. Bilodeau, T. Kitagawa, D.C. Johnson, K.O. Hill, K. Hattori, Y. Hibino, and S. Gujrathi, “Photosensitivity in phosphorous-doped silica glass and optical waveguides,” Appl. Phys. Lett. 65, 394–396 (1994).
[Crossref]

Bruce, A.

C.K. Madsen, L. Adams, R. Scotti, A. Bruce, M. Capuzzo, L. Gomez, and E. Laskowski, “A multi-port add/drop router using UV-induced gratings in planar waveguides,” Optical Fiber Communication Conference (OFC’99), paper ThH3 (1999).

Canning, J.

J. Canning, K. Sommer, and M. Englund, “Fibre gratings for high temperature sensor applications,” Meas. Sci. Technol. 12, 824–828 (2001).
[Crossref]

M. Äslund and J. Canning, “Annealing properties of gratings written into UV-presensitized hydrogen-outdiffused optical fiber,” Opt. Lett. 25,692–694 (2000).
[Crossref]

Capuzzo, M.

C.K. Madsen, L. Adams, R. Scotti, A. Bruce, M. Capuzzo, L. Gomez, and E. Laskowski, “A multi-port add/drop router using UV-induced gratings in planar waveguides,” Optical Fiber Communication Conference (OFC’99), paper ThH3 (1999).

Dong, X.Y.

B.O. Guan, H.Y. Tam, X.M. Tao, and X.Y. Dong, “Highly stable fiber Bragg gratings written in hydrogen-loaded fiber,” IEEE Photonics Technol. Lett. 12, 1349–1351 (2000).
[Crossref]

Douay, M.

Edahiro, T.

M. Kawachi, M. Yasu, and T. Edahiro, “Fabrication of SiO-TiO glass planar optical waveguides by flame hydrolysis deposition,” Electron. Lett. 19, 583–584 (1983).
[Crossref]

Englund, M.

J. Canning, K. Sommer, and M. Englund, “Fibre gratings for high temperature sensor applications,” Meas. Sci. Technol. 12, 824–828 (2001).
[Crossref]

Erdogan, T.

T.A. Strasser, T. Erdogan, A.E. White, V. Mizrahi, and P.J. Lemaire, “Ultraviolet laser fabrication of strong, nearly polarization-independent Bragg reflectors in germanium-doped silica waveguides on silica substrates,” Appl. Phys. Lett. 65, 3308–3310 (1994).
[Crossref]

T. Erdogan, V. Mizrahi, and P. Monroe, “Decay of ultraviolet-induced fiber Bragg gratings,” J. Appl. Phys. 76, 73–80 (1994).
[Crossref]

R.M. Atkins, P.J. Lemaire, T. Erdogan, and V. Mizrahi, “Mechanisms of enhanced UV photosensitivity via hydrogen loading in germanosilicate glasses,” Electron. Lett. 29, 1234–1235 (1993).
[Crossref]

Gallagher, M.D.

H. Patrick, S.L. Gilbert, A. Lidgard, and M.D. Gallagher, “Annealing of Bragg gratings in hydrogen-loaded optical fiber,” J. Appl. Phys. 78, 2940–2945 (1995).
[Crossref]

Garside, B.K.

Gilbert, S.L.

H. Patrick, S.L. Gilbert, A. Lidgard, and M.D. Gallagher, “Annealing of Bragg gratings in hydrogen-loaded optical fiber,” J. Appl. Phys. 78, 2940–2945 (1995).
[Crossref]

Gomez, L.

C.K. Madsen, L. Adams, R. Scotti, A. Bruce, M. Capuzzo, L. Gomez, and E. Laskowski, “A multi-port add/drop router using UV-induced gratings in planar waveguides,” Optical Fiber Communication Conference (OFC’99), paper ThH3 (1999).

Guan, B.O.

B.O. Guan, H.Y. Tam, X.M. Tao, and X.Y. Dong, “Highly stable fiber Bragg gratings written in hydrogen-loaded fiber,” IEEE Photonics Technol. Lett. 12, 1349–1351 (2000).
[Crossref]

Gujrathi, S.

B. Malo, J. Albert, F. Bilodeau, T. Kitagawa, D.C. Johnson, K.O. Hill, K. Hattori, Y. Hibino, and S. Gujrathi, “Photosensitivity in phosphorous-doped silica glass and optical waveguides,” Appl. Phys. Lett. 65, 394–396 (1994).
[Crossref]

Gus, J.Z.Y.

S. Kannan, J.Z.Y. Gus, and P.J. Lemaire, “Thermal stability analysis of UV-induced fiber Bragg gratings,” J. Lightwave Technol. 15, 1478–1483 (1997).
[Crossref]

Hattori, K.

B. Malo, J. Albert, F. Bilodeau, T. Kitagawa, D.C. Johnson, K.O. Hill, K. Hattori, Y. Hibino, and S. Gujrathi, “Photosensitivity in phosphorous-doped silica glass and optical waveguides,” Appl. Phys. Lett. 65, 394–396 (1994).
[Crossref]

Hibino, Y.

Y. Hibino, T. Kitagawa, K.O. Hill, F. Bilodeau, B. Malo, J. Albert, and D.C. Johnson, “Wavelength division multiplexer with photoinduced Bragg gratings fabricated in a planar-ligthwave-waveguide-type asymmetric Mach-Zender interferometer on Si,” IEEE Photonics Technol. Lett. 8, 84–86 (1996).
[Crossref]

B. Malo, J. Albert, F. Bilodeau, T. Kitagawa, D.C. Johnson, K.O. Hill, K. Hattori, Y. Hibino, and S. Gujrathi, “Photosensitivity in phosphorous-doped silica glass and optical waveguides,” Appl. Phys. Lett. 65, 394–396 (1994).
[Crossref]

Hidayat, A.

Hill, K.O.

Y. Hibino, T. Kitagawa, K.O. Hill, F. Bilodeau, B. Malo, J. Albert, and D.C. Johnson, “Wavelength division multiplexer with photoinduced Bragg gratings fabricated in a planar-ligthwave-waveguide-type asymmetric Mach-Zender interferometer on Si,” IEEE Photonics Technol. Lett. 8, 84–86 (1996).
[Crossref]

B. Malo, J. Albert, F. Bilodeau, T. Kitagawa, D.C. Johnson, K.O. Hill, K. Hattori, Y. Hibino, and S. Gujrathi, “Photosensitivity in phosphorous-doped silica glass and optical waveguides,” Appl. Phys. Lett. 65, 394–396 (1994).
[Crossref]

Johnson, D.C.

Y. Hibino, T. Kitagawa, K.O. Hill, F. Bilodeau, B. Malo, J. Albert, and D.C. Johnson, “Wavelength division multiplexer with photoinduced Bragg gratings fabricated in a planar-ligthwave-waveguide-type asymmetric Mach-Zender interferometer on Si,” IEEE Photonics Technol. Lett. 8, 84–86 (1996).
[Crossref]

B. Malo, J. Albert, F. Bilodeau, T. Kitagawa, D.C. Johnson, K.O. Hill, K. Hattori, Y. Hibino, and S. Gujrathi, “Photosensitivity in phosphorous-doped silica glass and optical waveguides,” Appl. Phys. Lett. 65, 394–396 (1994).
[Crossref]

Kannan, S.

S. Kannan, J.Z.Y. Gus, and P.J. Lemaire, “Thermal stability analysis of UV-induced fiber Bragg gratings,” J. Lightwave Technol. 15, 1478–1483 (1997).
[Crossref]

Kawachi, M.

Y. Yamada, A. Takagi, I. Ogawa, M. Kawachi, and M. Kobayashi, “Silica based-optical waveguide on terraced silicon substrate as hybrid integration platform,” Electron. Lett. 29, 444–446 (1993).
[Crossref]

M. Kawachi, M. Yasu, and T. Edahiro, “Fabrication of SiO-TiO glass planar optical waveguides by flame hydrolysis deposition,” Electron. Lett. 19, 583–584 (1983).
[Crossref]

Kitagawa, T.

Y. Hibino, T. Kitagawa, K.O. Hill, F. Bilodeau, B. Malo, J. Albert, and D.C. Johnson, “Wavelength division multiplexer with photoinduced Bragg gratings fabricated in a planar-ligthwave-waveguide-type asymmetric Mach-Zender interferometer on Si,” IEEE Photonics Technol. Lett. 8, 84–86 (1996).
[Crossref]

B. Malo, J. Albert, F. Bilodeau, T. Kitagawa, D.C. Johnson, K.O. Hill, K. Hattori, Y. Hibino, and S. Gujrathi, “Photosensitivity in phosphorous-doped silica glass and optical waveguides,” Appl. Phys. Lett. 65, 394–396 (1994).
[Crossref]

Kobayashi, M.

Y. Yamada, A. Takagi, I. Ogawa, M. Kawachi, and M. Kobayashi, “Silica based-optical waveguide on terraced silicon substrate as hybrid integration platform,” Electron. Lett. 29, 444–446 (1993).
[Crossref]

Kohnke, G.E.

G.E. Kohnke, D.W. Nightingale, P.G. Wigley, and C.R. Pollock, “Photosensitization of optical fiber by UV exposure of hydrogen loaded fiber,” Optical Fiber Communication Conference (OFC’99), paper PD20 (1999).

Lam, D.K.W.

Laskowski, E.

C.K. Madsen, L. Adams, R. Scotti, A. Bruce, M. Capuzzo, L. Gomez, and E. Laskowski, “A multi-port add/drop router using UV-induced gratings in planar waveguides,” Optical Fiber Communication Conference (OFC’99), paper ThH3 (1999).

Leconte, B.

B. Leconte PhD. thesis n°2379, University of Lille, France, available on request (1998).

Lemaire, P.J.

S. Kannan, J.Z.Y. Gus, and P.J. Lemaire, “Thermal stability analysis of UV-induced fiber Bragg gratings,” J. Lightwave Technol. 15, 1478–1483 (1997).
[Crossref]

T.A. Strasser, T. Erdogan, A.E. White, V. Mizrahi, and P.J. Lemaire, “Ultraviolet laser fabrication of strong, nearly polarization-independent Bragg reflectors in germanium-doped silica waveguides on silica substrates,” Appl. Phys. Lett. 65, 3308–3310 (1994).
[Crossref]

R.M. Atkins, P.J. Lemaire, T. Erdogan, and V. Mizrahi, “Mechanisms of enhanced UV photosensitivity via hydrogen loading in germanosilicate glasses,” Electron. Lett. 29, 1234–1235 (1993).
[Crossref]

Lidgard, A.

H. Patrick, S.L. Gilbert, A. Lidgard, and M.D. Gallagher, “Annealing of Bragg gratings in hydrogen-loaded optical fiber,” J. Appl. Phys. 78, 2940–2945 (1995).
[Crossref]

Madsen, C.K.

C.K. Madsen, L. Adams, R. Scotti, A. Bruce, M. Capuzzo, L. Gomez, and E. Laskowski, “A multi-port add/drop router using UV-induced gratings in planar waveguides,” Optical Fiber Communication Conference (OFC’99), paper ThH3 (1999).

Malo, B.

Y. Hibino, T. Kitagawa, K.O. Hill, F. Bilodeau, B. Malo, J. Albert, and D.C. Johnson, “Wavelength division multiplexer with photoinduced Bragg gratings fabricated in a planar-ligthwave-waveguide-type asymmetric Mach-Zender interferometer on Si,” IEEE Photonics Technol. Lett. 8, 84–86 (1996).
[Crossref]

B. Malo, J. Albert, F. Bilodeau, T. Kitagawa, D.C. Johnson, K.O. Hill, K. Hattori, Y. Hibino, and S. Gujrathi, “Photosensitivity in phosphorous-doped silica glass and optical waveguides,” Appl. Phys. Lett. 65, 394–396 (1994).
[Crossref]

Mizrahi, V.

T. Erdogan, V. Mizrahi, and P. Monroe, “Decay of ultraviolet-induced fiber Bragg gratings,” J. Appl. Phys. 76, 73–80 (1994).
[Crossref]

T.A. Strasser, T. Erdogan, A.E. White, V. Mizrahi, and P.J. Lemaire, “Ultraviolet laser fabrication of strong, nearly polarization-independent Bragg reflectors in germanium-doped silica waveguides on silica substrates,” Appl. Phys. Lett. 65, 3308–3310 (1994).
[Crossref]

R.M. Atkins, P.J. Lemaire, T. Erdogan, and V. Mizrahi, “Mechanisms of enhanced UV photosensitivity via hydrogen loading in germanosilicate glasses,” Electron. Lett. 29, 1234–1235 (1993).
[Crossref]

Monroe, P.

T. Erdogan, V. Mizrahi, and P. Monroe, “Decay of ultraviolet-induced fiber Bragg gratings,” J. Appl. Phys. 76, 73–80 (1994).
[Crossref]

Niay, P.

Nightingale, D.W.

G.E. Kohnke, D.W. Nightingale, P.G. Wigley, and C.R. Pollock, “Photosensitization of optical fiber by UV exposure of hydrogen loaded fiber,” Optical Fiber Communication Conference (OFC’99), paper PD20 (1999).

Ogawa, I.

Y. Yamada, A. Takagi, I. Ogawa, M. Kawachi, and M. Kobayashi, “Silica based-optical waveguide on terraced silicon substrate as hybrid integration platform,” Electron. Lett. 29, 444–446 (1993).
[Crossref]

Patrick, H.

H. Patrick, S.L. Gilbert, A. Lidgard, and M.D. Gallagher, “Annealing of Bragg gratings in hydrogen-loaded optical fiber,” J. Appl. Phys. 78, 2940–2945 (1995).
[Crossref]

Pollock, C.R.

G.E. Kohnke, D.W. Nightingale, P.G. Wigley, and C.R. Pollock, “Photosensitization of optical fiber by UV exposure of hydrogen loaded fiber,” Optical Fiber Communication Conference (OFC’99), paper PD20 (1999).

Poumellec, B.

Ramecourt, D.

D. Ramecourt, P. Niay, P. Bernage, I. Riant, and M. Douay, “Growth of strength of Bragg gratings written in H2-loaded telecommunication fibre during CW UV post-exposure,” Electron. Lett. 35, 329–331 (1999).
[Crossref]

Razafimahatratra, D.

Riant, I.

D. Razafimahatratra, P. Niay, M. Douay, B. Poumellec, and I. Riant, “Comparison of isochronal and isothermal decays of Bragg gratings written through continuous-wave exposure of an unloaded germanosilicate fiber,” Appl. Opt. 39, 1924–1933 (2000).
[Crossref]

D. Ramecourt, P. Niay, P. Bernage, I. Riant, and M. Douay, “Growth of strength of Bragg gratings written in H2-loaded telecommunication fibre during CW UV post-exposure,” Electron. Lett. 35, 329–331 (1999).
[Crossref]

Scotti, R.

C.K. Madsen, L. Adams, R. Scotti, A. Bruce, M. Capuzzo, L. Gomez, and E. Laskowski, “A multi-port add/drop router using UV-induced gratings in planar waveguides,” Optical Fiber Communication Conference (OFC’99), paper ThH3 (1999).

Sommer, K.

J. Canning, K. Sommer, and M. Englund, “Fibre gratings for high temperature sensor applications,” Meas. Sci. Technol. 12, 824–828 (2001).
[Crossref]

Strasser, T.A.

T.A. Strasser, T. Erdogan, A.E. White, V. Mizrahi, and P.J. Lemaire, “Ultraviolet laser fabrication of strong, nearly polarization-independent Bragg reflectors in germanium-doped silica waveguides on silica substrates,” Appl. Phys. Lett. 65, 3308–3310 (1994).
[Crossref]

Takagi, A.

Y. Yamada, A. Takagi, I. Ogawa, M. Kawachi, and M. Kobayashi, “Silica based-optical waveguide on terraced silicon substrate as hybrid integration platform,” Electron. Lett. 29, 444–446 (1993).
[Crossref]

Tam, H.Y.

B.O. Guan, H.Y. Tam, X.M. Tao, and X.Y. Dong, “Highly stable fiber Bragg gratings written in hydrogen-loaded fiber,” IEEE Photonics Technol. Lett. 12, 1349–1351 (2000).
[Crossref]

Tao, X.M.

B.O. Guan, H.Y. Tam, X.M. Tao, and X.Y. Dong, “Highly stable fiber Bragg gratings written in hydrogen-loaded fiber,” IEEE Photonics Technol. Lett. 12, 1349–1351 (2000).
[Crossref]

Wang, Q.

White, A.E.

T.A. Strasser, T. Erdogan, A.E. White, V. Mizrahi, and P.J. Lemaire, “Ultraviolet laser fabrication of strong, nearly polarization-independent Bragg reflectors in germanium-doped silica waveguides on silica substrates,” Appl. Phys. Lett. 65, 3308–3310 (1994).
[Crossref]

Wigley, P.G.

G.E. Kohnke, D.W. Nightingale, P.G. Wigley, and C.R. Pollock, “Photosensitization of optical fiber by UV exposure of hydrogen loaded fiber,” Optical Fiber Communication Conference (OFC’99), paper PD20 (1999).

Yamada, Y.

Y. Yamada, A. Takagi, I. Ogawa, M. Kawachi, and M. Kobayashi, “Silica based-optical waveguide on terraced silicon substrate as hybrid integration platform,” Electron. Lett. 29, 444–446 (1993).
[Crossref]

Yasu, M.

M. Kawachi, M. Yasu, and T. Edahiro, “Fabrication of SiO-TiO glass planar optical waveguides by flame hydrolysis deposition,” Electron. Lett. 19, 583–584 (1983).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (2)

B. Malo, J. Albert, F. Bilodeau, T. Kitagawa, D.C. Johnson, K.O. Hill, K. Hattori, Y. Hibino, and S. Gujrathi, “Photosensitivity in phosphorous-doped silica glass and optical waveguides,” Appl. Phys. Lett. 65, 394–396 (1994).
[Crossref]

T.A. Strasser, T. Erdogan, A.E. White, V. Mizrahi, and P.J. Lemaire, “Ultraviolet laser fabrication of strong, nearly polarization-independent Bragg reflectors in germanium-doped silica waveguides on silica substrates,” Appl. Phys. Lett. 65, 3308–3310 (1994).
[Crossref]

Electron. Lett. (4)

Y. Yamada, A. Takagi, I. Ogawa, M. Kawachi, and M. Kobayashi, “Silica based-optical waveguide on terraced silicon substrate as hybrid integration platform,” Electron. Lett. 29, 444–446 (1993).
[Crossref]

R.M. Atkins, P.J. Lemaire, T. Erdogan, and V. Mizrahi, “Mechanisms of enhanced UV photosensitivity via hydrogen loading in germanosilicate glasses,” Electron. Lett. 29, 1234–1235 (1993).
[Crossref]

D. Ramecourt, P. Niay, P. Bernage, I. Riant, and M. Douay, “Growth of strength of Bragg gratings written in H2-loaded telecommunication fibre during CW UV post-exposure,” Electron. Lett. 35, 329–331 (1999).
[Crossref]

M. Kawachi, M. Yasu, and T. Edahiro, “Fabrication of SiO-TiO glass planar optical waveguides by flame hydrolysis deposition,” Electron. Lett. 19, 583–584 (1983).
[Crossref]

IEEE Photonics Technol. Lett. (2)

B.O. Guan, H.Y. Tam, X.M. Tao, and X.Y. Dong, “Highly stable fiber Bragg gratings written in hydrogen-loaded fiber,” IEEE Photonics Technol. Lett. 12, 1349–1351 (2000).
[Crossref]

Y. Hibino, T. Kitagawa, K.O. Hill, F. Bilodeau, B. Malo, J. Albert, and D.C. Johnson, “Wavelength division multiplexer with photoinduced Bragg gratings fabricated in a planar-ligthwave-waveguide-type asymmetric Mach-Zender interferometer on Si,” IEEE Photonics Technol. Lett. 8, 84–86 (1996).
[Crossref]

J. Appl. Phys. (2)

H. Patrick, S.L. Gilbert, A. Lidgard, and M.D. Gallagher, “Annealing of Bragg gratings in hydrogen-loaded optical fiber,” J. Appl. Phys. 78, 2940–2945 (1995).
[Crossref]

T. Erdogan, V. Mizrahi, and P. Monroe, “Decay of ultraviolet-induced fiber Bragg gratings,” J. Appl. Phys. 76, 73–80 (1994).
[Crossref]

J. Lightwave Technol. (2)

J. Non-Cryst. Sol. (1)

B. Poumellec, “Links between writing and erasure (or stability) of Bragg gratings in disordered media,” J. Non-Cryst. Sol. 239, 108–115 (1998).
[Crossref]

Meas. Sci. Technol. (1)

J. Canning, K. Sommer, and M. Englund, “Fibre gratings for high temperature sensor applications,” Meas. Sci. Technol. 12, 824–828 (2001).
[Crossref]

Opt. Lett. (1)

Other (3)

C.K. Madsen, L. Adams, R. Scotti, A. Bruce, M. Capuzzo, L. Gomez, and E. Laskowski, “A multi-port add/drop router using UV-induced gratings in planar waveguides,” Optical Fiber Communication Conference (OFC’99), paper ThH3 (1999).

G.E. Kohnke, D.W. Nightingale, P.G. Wigley, and C.R. Pollock, “Photosensitization of optical fiber by UV exposure of hydrogen loaded fiber,” Optical Fiber Communication Conference (OFC’99), paper PD20 (1999).

B. Leconte PhD. thesis n°2379, University of Lille, France, available on request (1998).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Fig. 1(a). (left) Normalized index modulations NImod (30 min, T) for two G H2 w gratings (Δnmod = 10-4).

Fig. 2.
Fig. 2.

(left) Normalized index modulation NImod (t, T) of BGs written in H2-loaded waveguides as a function of the 30 min isochronal annealing temperature (T).

Fig. 3.
Fig. 3.

(right) Normalized mean index NImean (t, T) of BGs written in H2-loaded waveguides as a function of the 30 min isochronal annealing temperature (T).

Fig. 4.
Fig. 4.

(left) Normalized Index modulation NImod (t, T) of BGs written in UV-hypersensitized waveguides as a function of the 30 min isochronal annealing temperature (T).

Fig. 5.
Fig. 5.

(right) Normalized mean index NImean (t, T) of BGs written in UV-hypersensitized waveguides as a function of the 30 min isochronal annealing temperature (T).

Fig. 6.
Fig. 6.

Normalized Index modulation NImod (t, T) for gratings as a function of the 30 min isochronal annealing temperature (T). The sensitization method used before gratings inscriptions is the parameter of the experiment.

Fig. 7.
Fig. 7.

Shifts in the Bragg wavelengths experienced by the BGs as a function of the 30 min isochronal annealing temperature (T). The sensitization method used before gratings inscriptions is the parameter of the experiment.

Fig. 8.
Fig. 8.

Normalized mean index NImean (t, T) of for gratings as a function of the 30 min isochronal annealing temperature (T). The sensitization method used before gratings inscriptions is the parameter of the experiment.

Fig. 9.
Fig. 9.

Comparison between NImod (t, T) and NImean (t, T) for gratings written in H2-loaded waveguides with NImod (0,296K) equal to 10-3 as a function of the 30 min isochronal annealing temperature (T).

Fig. 10.
Fig. 10.

Isothermal decay of the spectral characteristics (NImod = full circles, NImean = empty circles) of a BG written in an H2-loaded waveguide. The initial modulation was 10-3 and the annealing temperature was 423 K. The solid curve is the predicted isothermal decay from the MC approach.

Fig. 11.
Fig. 11.

Isochronal step annealing of gratings written in H2-loaded waveguides. Three isochronal annealing times (30 min, 24 h, 8 days) have been investigated.

Fig. 12.
Fig. 12.

Normalized Index modulation as a function of demarcation energy (Ed = kBT ln (k0 t)) corresponding to BG written in H2-loaded waveguides. The full squares are for preliminary values whereas the empty squares are the corrected data when the thermal history of each grating is taken into account at each temperature. The solid curve is a fit of the data to a third-order polynomial equation.

Tables (1)

Tables Icon

Table 1. Spectral characteristics of the Bragg gratings at 296 K (η corrected).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Δ n mod = tanh 1 ( R ) λ π L η
N I mod ( t , T ) = Δ n mod ( t , T ) Δ n mod ( 0 , 296 K )
N I mean ( t , T ) = Δ n mean ( t , T ) Δ n mean ( 0 , 296 K )
where Δ n mean ( t , T ) = n e f f λ B ( t , T ) λ Binit no H 2 η . λ B ( t , T )
E d = k B T l n ( k 0 t )

Metrics