Abstract

A single-mode, linearly polarized, 1118 nm ytterbium fiber laser was applied to pumping of a short fiber length, polarization-maintaining Raman cavity, resulting in a 0.4 nm linewidth, 23 W CW source at 1179 nm. Efficient, single-pass frequency doubling of the Raman source in MgO doped PPLN to 589 nm was demonstrated with CW power levels in excess of 3 W. No beam quality degradation was observed due to photorefraction at pump power densities up to 2 MW/cm2. The proposed approach can be readily extended to Watt-level generation of any desired wavelength in the 560 to 770 nm range.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. IPG Photonics, Raman lasers list, http://www.ipgphotonics.com/documents.cfm?documentID=115&filetype=pdf
  2. Y. Feng, S. Huang, A. Shirakawa, and K. Ueda, “Generation of 10.5 W, 1178 nm laser based on phosphosilicate Raman fiber laser,” Jap. J. Appl. Phys.-2,  42, L1439–L1441 (2003).
    [CrossRef]
  3. Y. Feng, S. Huang, A. Shirakawa, and K. Ueda, “589 nm light source based on Raman fiber laser,” Jap. J. Appl. Phys.-2,  43, L722–L724 (2004).
    [CrossRef]
  4. R. H. Stolen, “Polarization effects in fiber Raman and Brillouin lasers,” IEEE JQE QE-15, 1157–1160 (1979).
    [CrossRef]
  5. S. A. Skubchenko, M. Y. Vyatkin, and D.V. Gapontsev, “High power CW linearly polarized all-fiber Raman laser,” IEEE Photonics Technol. Lett. 16, 1014–1016 (2004).
    [CrossRef]
  6. G. D. Boyd and D. A. Kleinman, “Parametric Interaction of Focused Gaussian Light Beams,” J. Appl. Phys. 39, 3597–3639 (1968).
    [CrossRef]
  7. R. C. Miller, W. A. Nordland, and P. M. Bridenbaugh, “Dependence matched LiNbO3 waveguides,” Opt. Lett. 17, 795–797 (1992).
    [CrossRef]
  8. I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, and Ryoichi Ito, “Absolute scale of second-order nonlinear-optical coefficients,” J. Opt. Soc. Am.-B 14, 2268–2294 (1997).
    [CrossRef]

2004 (2)

Y. Feng, S. Huang, A. Shirakawa, and K. Ueda, “589 nm light source based on Raman fiber laser,” Jap. J. Appl. Phys.-2,  43, L722–L724 (2004).
[CrossRef]

S. A. Skubchenko, M. Y. Vyatkin, and D.V. Gapontsev, “High power CW linearly polarized all-fiber Raman laser,” IEEE Photonics Technol. Lett. 16, 1014–1016 (2004).
[CrossRef]

2003 (1)

Y. Feng, S. Huang, A. Shirakawa, and K. Ueda, “Generation of 10.5 W, 1178 nm laser based on phosphosilicate Raman fiber laser,” Jap. J. Appl. Phys.-2,  42, L1439–L1441 (2003).
[CrossRef]

1997 (1)

I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, and Ryoichi Ito, “Absolute scale of second-order nonlinear-optical coefficients,” J. Opt. Soc. Am.-B 14, 2268–2294 (1997).
[CrossRef]

1992 (1)

1979 (1)

R. H. Stolen, “Polarization effects in fiber Raman and Brillouin lasers,” IEEE JQE QE-15, 1157–1160 (1979).
[CrossRef]

1968 (1)

G. D. Boyd and D. A. Kleinman, “Parametric Interaction of Focused Gaussian Light Beams,” J. Appl. Phys. 39, 3597–3639 (1968).
[CrossRef]

Boyd, G. D.

G. D. Boyd and D. A. Kleinman, “Parametric Interaction of Focused Gaussian Light Beams,” J. Appl. Phys. 39, 3597–3639 (1968).
[CrossRef]

Bridenbaugh, P. M.

Feng, Y.

Y. Feng, S. Huang, A. Shirakawa, and K. Ueda, “589 nm light source based on Raman fiber laser,” Jap. J. Appl. Phys.-2,  43, L722–L724 (2004).
[CrossRef]

Y. Feng, S. Huang, A. Shirakawa, and K. Ueda, “Generation of 10.5 W, 1178 nm laser based on phosphosilicate Raman fiber laser,” Jap. J. Appl. Phys.-2,  42, L1439–L1441 (2003).
[CrossRef]

Gapontsev, D.V.

S. A. Skubchenko, M. Y. Vyatkin, and D.V. Gapontsev, “High power CW linearly polarized all-fiber Raman laser,” IEEE Photonics Technol. Lett. 16, 1014–1016 (2004).
[CrossRef]

Huang, S.

Y. Feng, S. Huang, A. Shirakawa, and K. Ueda, “589 nm light source based on Raman fiber laser,” Jap. J. Appl. Phys.-2,  43, L722–L724 (2004).
[CrossRef]

Y. Feng, S. Huang, A. Shirakawa, and K. Ueda, “Generation of 10.5 W, 1178 nm laser based on phosphosilicate Raman fiber laser,” Jap. J. Appl. Phys.-2,  42, L1439–L1441 (2003).
[CrossRef]

Ito, Ryoichi

I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, and Ryoichi Ito, “Absolute scale of second-order nonlinear-optical coefficients,” J. Opt. Soc. Am.-B 14, 2268–2294 (1997).
[CrossRef]

Kitamoto, A.

I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, and Ryoichi Ito, “Absolute scale of second-order nonlinear-optical coefficients,” J. Opt. Soc. Am.-B 14, 2268–2294 (1997).
[CrossRef]

Kleinman, D. A.

G. D. Boyd and D. A. Kleinman, “Parametric Interaction of Focused Gaussian Light Beams,” J. Appl. Phys. 39, 3597–3639 (1968).
[CrossRef]

Kondo, T.

I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, and Ryoichi Ito, “Absolute scale of second-order nonlinear-optical coefficients,” J. Opt. Soc. Am.-B 14, 2268–2294 (1997).
[CrossRef]

Miller, R. C.

Nordland, W. A.

Shirakawa, A.

Y. Feng, S. Huang, A. Shirakawa, and K. Ueda, “589 nm light source based on Raman fiber laser,” Jap. J. Appl. Phys.-2,  43, L722–L724 (2004).
[CrossRef]

Y. Feng, S. Huang, A. Shirakawa, and K. Ueda, “Generation of 10.5 W, 1178 nm laser based on phosphosilicate Raman fiber laser,” Jap. J. Appl. Phys.-2,  42, L1439–L1441 (2003).
[CrossRef]

Shirane, M.

I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, and Ryoichi Ito, “Absolute scale of second-order nonlinear-optical coefficients,” J. Opt. Soc. Am.-B 14, 2268–2294 (1997).
[CrossRef]

Shoji, I.

I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, and Ryoichi Ito, “Absolute scale of second-order nonlinear-optical coefficients,” J. Opt. Soc. Am.-B 14, 2268–2294 (1997).
[CrossRef]

Skubchenko, S. A.

S. A. Skubchenko, M. Y. Vyatkin, and D.V. Gapontsev, “High power CW linearly polarized all-fiber Raman laser,” IEEE Photonics Technol. Lett. 16, 1014–1016 (2004).
[CrossRef]

Stolen, R. H.

R. H. Stolen, “Polarization effects in fiber Raman and Brillouin lasers,” IEEE JQE QE-15, 1157–1160 (1979).
[CrossRef]

Ueda, K.

Y. Feng, S. Huang, A. Shirakawa, and K. Ueda, “589 nm light source based on Raman fiber laser,” Jap. J. Appl. Phys.-2,  43, L722–L724 (2004).
[CrossRef]

Y. Feng, S. Huang, A. Shirakawa, and K. Ueda, “Generation of 10.5 W, 1178 nm laser based on phosphosilicate Raman fiber laser,” Jap. J. Appl. Phys.-2,  42, L1439–L1441 (2003).
[CrossRef]

Vyatkin, M. Y.

S. A. Skubchenko, M. Y. Vyatkin, and D.V. Gapontsev, “High power CW linearly polarized all-fiber Raman laser,” IEEE Photonics Technol. Lett. 16, 1014–1016 (2004).
[CrossRef]

IEEE JQE QE-15 (1)

R. H. Stolen, “Polarization effects in fiber Raman and Brillouin lasers,” IEEE JQE QE-15, 1157–1160 (1979).
[CrossRef]

IEEE Photonics Technol. Lett. (1)

S. A. Skubchenko, M. Y. Vyatkin, and D.V. Gapontsev, “High power CW linearly polarized all-fiber Raman laser,” IEEE Photonics Technol. Lett. 16, 1014–1016 (2004).
[CrossRef]

J. Appl. Phys. (1)

G. D. Boyd and D. A. Kleinman, “Parametric Interaction of Focused Gaussian Light Beams,” J. Appl. Phys. 39, 3597–3639 (1968).
[CrossRef]

J. Opt. Soc. Am.-B (1)

I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, and Ryoichi Ito, “Absolute scale of second-order nonlinear-optical coefficients,” J. Opt. Soc. Am.-B 14, 2268–2294 (1997).
[CrossRef]

Jap. J. Appl. Phys.-2 (2)

Y. Feng, S. Huang, A. Shirakawa, and K. Ueda, “Generation of 10.5 W, 1178 nm laser based on phosphosilicate Raman fiber laser,” Jap. J. Appl. Phys.-2,  42, L1439–L1441 (2003).
[CrossRef]

Y. Feng, S. Huang, A. Shirakawa, and K. Ueda, “589 nm light source based on Raman fiber laser,” Jap. J. Appl. Phys.-2,  43, L722–L724 (2004).
[CrossRef]

Opt. Lett. (1)

Other (1)

IPG Photonics, Raman lasers list, http://www.ipgphotonics.com/documents.cfm?documentID=115&filetype=pdf

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

3 W 589 nm generation with frequency doubled, linearly polarized Raman laser.

Fig. 2.
Fig. 2.

(a) Evolution of the linewidth (FWHM) of the high power, linearly polarized 1178 nm output; (b) The output spectrum (blue) at 23W output power and Gaussian profile (orange) line of identical width added for comparison.

Fig. 3.
Fig. 3.

Power dependence of 589 nm CW second harmonic generation in 8mm long MgO PPLN. Inset shows a typical SH spectrum with 0.25 nm bandwidth at 2.3W 589 nm power level.

Fig. 4.
Fig. 4.

Second harmonic power versus the fundamental power within 0.6 nm QPM bandwidth.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

η = P 2 P 1 2 L = 8 ω 3 d 33 2 h m m ( 0 , L b ) π 3 n ω n 2 ω ε 0 c 4

Metrics