Abstract

Bioluminescence tomography (BLT) is used to localize and quantify bioluminescent sources in a small living animal. By advancing bioluminescent imaging to a tomographic framework, it helps to diagnose diseases, monitor therapies and facilitate drug development. In this paper, we establish a direct linear relationship between measured surface photon density and an unknown bioluminescence source distribution by using a finite-element method based on the diffusion approximation to the photon propagation in biological tissue. We develop a novel reconstruction algorithm to recover the source distribution. This algorithm incorporates a priori knowledge to define the permissible source region in order to enhance numerical stability and efficiency. Simulations with a numerical mouse chest phantom demonstrate the feasibility of the proposed BLT algorithm and reveal its performance in terms of source location, density, and robustness against noise. Lastly, BLT experiments are performed to identify the location and power of two light sources in a physical mouse chest phantom.

© 2005 Optical Society of America

PDF Article

References

  • View by:
  • |

  1. S. Bhaumik and S. S. Gambhir, �??Optical imaging of Renilla luciferase reporter gene expression in living mice,�?? Proc. Natl. Acad. Sci. USA 99, 377-382 (2002).
    [CrossRef]
  2. C. Contag and M. H. Bachmann, �??Advances in Bioluminescence imaging of gene expression,�?? Annu. Rev. Biomed. Eng. 4, 235-260 (2002).
    [CrossRef]
  3. P. Ray, A.M. Wu, and S.S. Gambhir, �??Optical bioluminescence and positron emission tomography imaging of a novel fusion reporter gene in tumor xenografts of living mice,�?? Cancer Res. 63, 1160-1165 (2003).
  4. W. Rice, M. D. Cable, and M. B. Nelson, �??In vivo imaging of light-emitting probes,�?? J. Biomed. Opt. 6, 432-440 (2001).
    [CrossRef]
  5. J. Welch and M. J. C. van Gemert, Optical and Thermal response of laser-irradiated tissue (Plenum Press, New York, 1995).
  6. A.D. Klose, V. Ntziachristos, and A.H. Hielscher, �??The inverse source problem based on the radiative transfer equation in optical molecular imaging,�?? J. Comput. Phys. 202, 323-345 (2005).
    [CrossRef]
  7. V. Ntziachristos, C. Tung, C. Bremer, and R. Weissleder, �??Fluorescence molecular tomography resolves protease activity in vivo,�?? Nat. Med. 8, 757-760 (2002).
    [CrossRef]
  8. R. Schultz, J. Ripoll, and V. Ntziachristos, �??Experimental fluorescence tomography of tissues with non-contact measurements,�?? IEEE Trans. Med. Imag. 23, 492-500 (2004).
  9. S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, �??A finite element approach for modeling photon transport in tissue,�?? Med. Phys. 20, 299-309 (1993).
    [CrossRef]
  10. J. Ripoll, D. Yessayan, G. Zacharakis, and V. Ntziachristos, �??Experimental determination of photon propagation in highly absorbing and scattering media,�?? J. Opt. Soc. Am. A 22, 546-551 (2005).
    [CrossRef]
  11. T. J. Farrell, M. S. Patterson, and B. Wilson, �??A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,�?? Med. Phys. 19, 879-888 (1992).
    [CrossRef]
  12. M. Gurfinkel, T. S. Pan, and E. M. Sevick-Muraca, �??Determination of optical properties in semi-infinite turbid media using imaging measurements of frequency-domain photon migration obtained with an intensified charge-coupled device,�?? J. Biomed. Opt. 9, 1336-1346 (2004).
    [CrossRef]
  13. M. Guven, B. Yazici, X. Intes, and B. Chance, �??Diffuse optical tomography with a priori anatomical information,�?? Phys. Med. Biol. 50, 2837-2858 (2005).
    [CrossRef]
  14. G. Wang, E. A. Hoffman, G. McLennan, L. V. Wang, M. Suter, and J. Meinel, �??Development of the first bioluminescent CT scanner,�?? Radiology 229(P), 566 (2003).
  15. G. Wang, Y. Li, and M. Jiang, �??Uniqueness theorems in bioluminescence tomography,�?? Med. Phys. 31, 2289-2299 (2004).
    [CrossRef]
  16. W. Cong, D. Kumar, Y. Liu, A. Cong, and G. Wang, �??A practical method to determine the light source distribution in bioluminescent imaging,�?? Proc. SPIE 5535, 679-686 (2004).
  17. X. Gu, Q. Zhang, L. Larcom, and H. Jiang, �??Three-dimensional bioluminescence tomography with model-based reconstruction,�?? Opt. Express 12, 3996-4000 (2004).
    [CrossRef]
  18. J. J. Duderstadt and L. J. Hamilton, Nuclear Reactor analysis (Wiley, New York, 1976).
  19. M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, �??The finite element method for the propagation of light in scattering media: Boundary and source conditions,�?? Med. Phys. 22, 1779- 1792 (1995).
    [CrossRef]
  20. S. S. Rao, The finite element method in engineering (Butterworth-Heinemann, Boston, 1999).
  21. S. C. Brenner and R. L. Scott, The Mathematical Theory of Finite Elements (Springer, Berlin-Heidelberg-New York, 1994).
  22. J. C. Ye, K. J. Webb, C. A. Bouman, and R. P. Millane, �??Optical diffusion tomography by iterative-coordinate-descent optimization in a Bayesian framework,�?? J. Opt. Soc. Am. A 16, 2400-2412 (1999).
  23. P. E. Gill, W. Murray, and M. Wright, Practical Optimization (Academic Press, New York, 1981).
  24. T. Chen, �??Digital Camera System Simulator and applications,�?? Ph. D. Thesis, Stanford University (2003).
  25. S. Holder, Electrical Impedance Tomography (Institute of Physics Publishing, Bristol and Philadelphia, 2005).

Annu. Rev. Biomed. Eng. (1)

C. Contag and M. H. Bachmann, �??Advances in Bioluminescence imaging of gene expression,�?? Annu. Rev. Biomed. Eng. 4, 235-260 (2002).
[CrossRef]

Cancer Res. (1)

P. Ray, A.M. Wu, and S.S. Gambhir, �??Optical bioluminescence and positron emission tomography imaging of a novel fusion reporter gene in tumor xenografts of living mice,�?? Cancer Res. 63, 1160-1165 (2003).

IEEE Trans. Med. Imag. (1)

R. Schultz, J. Ripoll, and V. Ntziachristos, �??Experimental fluorescence tomography of tissues with non-contact measurements,�?? IEEE Trans. Med. Imag. 23, 492-500 (2004).

J. Biomed. Opt. (2)

W. Rice, M. D. Cable, and M. B. Nelson, �??In vivo imaging of light-emitting probes,�?? J. Biomed. Opt. 6, 432-440 (2001).
[CrossRef]

M. Gurfinkel, T. S. Pan, and E. M. Sevick-Muraca, �??Determination of optical properties in semi-infinite turbid media using imaging measurements of frequency-domain photon migration obtained with an intensified charge-coupled device,�?? J. Biomed. Opt. 9, 1336-1346 (2004).
[CrossRef]

J. Comput. Phys. (1)

A.D. Klose, V. Ntziachristos, and A.H. Hielscher, �??The inverse source problem based on the radiative transfer equation in optical molecular imaging,�?? J. Comput. Phys. 202, 323-345 (2005).
[CrossRef]

J. Opt. Soc. Am. A (2)

Med. Phys. (4)

S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, �??A finite element approach for modeling photon transport in tissue,�?? Med. Phys. 20, 299-309 (1993).
[CrossRef]

T. J. Farrell, M. S. Patterson, and B. Wilson, �??A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,�?? Med. Phys. 19, 879-888 (1992).
[CrossRef]

G. Wang, Y. Li, and M. Jiang, �??Uniqueness theorems in bioluminescence tomography,�?? Med. Phys. 31, 2289-2299 (2004).
[CrossRef]

M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, �??The finite element method for the propagation of light in scattering media: Boundary and source conditions,�?? Med. Phys. 22, 1779- 1792 (1995).
[CrossRef]

Nat. Med. (1)

V. Ntziachristos, C. Tung, C. Bremer, and R. Weissleder, �??Fluorescence molecular tomography resolves protease activity in vivo,�?? Nat. Med. 8, 757-760 (2002).
[CrossRef]

Opt. Express (1)

Phys. Med. Biol. (1)

M. Guven, B. Yazici, X. Intes, and B. Chance, �??Diffuse optical tomography with a priori anatomical information,�?? Phys. Med. Biol. 50, 2837-2858 (2005).
[CrossRef]

Proc. Natl. Acad. Sci. USA (1)

S. Bhaumik and S. S. Gambhir, �??Optical imaging of Renilla luciferase reporter gene expression in living mice,�?? Proc. Natl. Acad. Sci. USA 99, 377-382 (2002).
[CrossRef]

Proc. SPIE (1)

W. Cong, D. Kumar, Y. Liu, A. Cong, and G. Wang, �??A practical method to determine the light source distribution in bioluminescent imaging,�?? Proc. SPIE 5535, 679-686 (2004).

Radiology (1)

G. Wang, E. A. Hoffman, G. McLennan, L. V. Wang, M. Suter, and J. Meinel, �??Development of the first bioluminescent CT scanner,�?? Radiology 229(P), 566 (2003).

Other (7)

J. J. Duderstadt and L. J. Hamilton, Nuclear Reactor analysis (Wiley, New York, 1976).

S. S. Rao, The finite element method in engineering (Butterworth-Heinemann, Boston, 1999).

S. C. Brenner and R. L. Scott, The Mathematical Theory of Finite Elements (Springer, Berlin-Heidelberg-New York, 1994).

P. E. Gill, W. Murray, and M. Wright, Practical Optimization (Academic Press, New York, 1981).

T. Chen, �??Digital Camera System Simulator and applications,�?? Ph. D. Thesis, Stanford University (2003).

S. Holder, Electrical Impedance Tomography (Institute of Physics Publishing, Bristol and Philadelphia, 2005).

J. Welch and M. J. C. van Gemert, Optical and Thermal response of laser-irradiated tissue (Plenum Press, New York, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics