Abstract

In microscopy, high magnifications are achievable for investigating micro-objects but the paradigm is that higher is the required magnification, lower is the depth of focus. For an object having a three-dimensional (3D) complex shape only a portion of it appears in good focus to the observer who is essentially looking at a single image plane. Actually, two approaches exist to obtain an extended focused image, both having severe limitations since the first requires mechanical scanning while the other one requires specially designed optics. We demonstrate that an extended focused image of an object can be obtained through digital holography without any mechanical scanning or special optical components. The conceptual novelty of the proposed approach lies in the fact that it is possible to completely exploit the unique feature of DH in extracting all the information content stored in hologram, amplitude and phase, to extend the depth of focus.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Hooke, “Micrographia,” (Warnock Library, London, 1665).
  2. S. E. Fraser, “Crystal gazing in optical microscopy,” Nat. Bio. 21, 1272–1273 (2003).
    [CrossRef]
  3. L. Mertz, “Transformation in Optics,” 101 (Wiley, New York, 1965).
  4. J.W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11, 77–79 (1967).
    [CrossRef]
  5. T. H. Demetrakopoulos and R. Mitra, “Digital and Optical Reconstruction of images from suboptical patterns, ” Appl. Opt. 13, 665–670 (1974).
    [CrossRef] [PubMed]
  6. L. P. Yaroslavsky and N.S. Merzlyakov, “Methods of digital holography,” Consultants Bureau, New York (1980).
  7. D. Gabor, “Microscopy by reconstructed wave-fronts,” Proc. Royal Society A 197, 454–487 (1949).
    [CrossRef]
  8. G. Hausler, “A method to increase the depth of focus by two step image processing,” Opt. Commun. 6, 38 (1972).
    [CrossRef]
  9. R.J. Pieper and A. Korpel, “Image processing for extended depth of field,” Appl. Opt. 22, 1449–1453 (1983).
    [CrossRef] [PubMed]
  10. For example, description of EFI capability and process in optical microscopes is into the web sites of two important manufacturers: http://www.olympusamerica.com/seg_section/msfive/ms5_appmod.asp;http://www.zeiss.de/C12567BE0045ACF1/InhaltFrame/DA8E39D74AA60C49412568B90054EDD2
  11. R. Edward, Jr. Dowski, and W.T. Cathey, “Extended depth of field through wavefront coding,” Appl. Opt. 34, 1859–1866 (1995).
    [CrossRef]
  12. D.L. Barton, et al “Wavefront coded imaging system for MEMS analysis”, Presented at international Society for testing and failure analysis meeting, Phoeneics, AZ (USA) (Nov. 2002).
  13. D. L. Marks, D.L. Stack, D.J. Brady, and J. Van Der Gracht, “Three-dimensional tomography using a cubic-phase plate extended depth-of-field system,” Opt. Lett. 24, 253–255 (1999).
    [CrossRef]
  14. S. Grilli, P. Ferraro, S. DeNicola, A. Finizio, G. Pierattini, and R. Meucci, “Whole optical wavefields reconstruction by digital holography,” Opt. Express. 9, 294–302 (2001).
    [CrossRef] [PubMed]
  15. U. Schnars and W.P.O. Juptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. 13, R85–R101 (2002).
    [CrossRef]
  16. S. Cuche, F. Bevilacqua, and C. Depeursinge, “Digital holography for quantitative phase-contrast imaging,” Opt. Lett. 24, 291–293 (1999).
    [CrossRef]
  17. P. Ferraro, S. DeNicola, A. Finizio, G. Coppola, S. Grilli, C. Magro, and G. Pierattini, “Compensation of the inherent wave front curvature in digital holographic coherent microscopy for quantitative phase-contrast imaging,” Appl. Opt. 42, 1938–1946 (2003).
    [CrossRef] [PubMed]
  18. G. Coppola, P. Ferraro, M. Iodice, S. De Nicola, A. Finizio, and S. Grilli, “A digital holographic microscope for complete characterization of microelectromechanical systems,” Meas. Sci. Technol. 15, 529–539 (2004).
    [CrossRef]
  19. P. Ferraro, G. Coppola, S. De Nicola, A. Finizio, and G. Pierattini, “Digital holographic microscope with automatic focus tracking by detecting sample displacement in real time,” Opt. Lett. 28, 1257–1259 (2003).
    [CrossRef] [PubMed]
  20. P. Ferraro, G. Coppola, D. Alfieri, S. DeNicola, A. Finizio, and G. Pierattini, “Controlling image size as a function of distance and wavelength in Fresnel transform reconstruction of digital holograms,” Opt. Lett. 29, 854–856 (2004).
    [CrossRef] [PubMed]

2004 (2)

G. Coppola, P. Ferraro, M. Iodice, S. De Nicola, A. Finizio, and S. Grilli, “A digital holographic microscope for complete characterization of microelectromechanical systems,” Meas. Sci. Technol. 15, 529–539 (2004).
[CrossRef]

P. Ferraro, G. Coppola, D. Alfieri, S. DeNicola, A. Finizio, and G. Pierattini, “Controlling image size as a function of distance and wavelength in Fresnel transform reconstruction of digital holograms,” Opt. Lett. 29, 854–856 (2004).
[CrossRef] [PubMed]

2003 (3)

2002 (1)

U. Schnars and W.P.O. Juptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. 13, R85–R101 (2002).
[CrossRef]

2001 (1)

S. Grilli, P. Ferraro, S. DeNicola, A. Finizio, G. Pierattini, and R. Meucci, “Whole optical wavefields reconstruction by digital holography,” Opt. Express. 9, 294–302 (2001).
[CrossRef] [PubMed]

1999 (2)

1995 (1)

1983 (1)

1974 (1)

1972 (1)

G. Hausler, “A method to increase the depth of focus by two step image processing,” Opt. Commun. 6, 38 (1972).
[CrossRef]

1967 (1)

J.W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11, 77–79 (1967).
[CrossRef]

1949 (1)

D. Gabor, “Microscopy by reconstructed wave-fronts,” Proc. Royal Society A 197, 454–487 (1949).
[CrossRef]

Alfieri, D.

Barton, D.L.

D.L. Barton, et al “Wavefront coded imaging system for MEMS analysis”, Presented at international Society for testing and failure analysis meeting, Phoeneics, AZ (USA) (Nov. 2002).

Bevilacqua, F.

Brady, D.J.

Cathey, W.T.

Coppola, G.

Cuche, S.

De Nicola, S.

G. Coppola, P. Ferraro, M. Iodice, S. De Nicola, A. Finizio, and S. Grilli, “A digital holographic microscope for complete characterization of microelectromechanical systems,” Meas. Sci. Technol. 15, 529–539 (2004).
[CrossRef]

P. Ferraro, G. Coppola, S. De Nicola, A. Finizio, and G. Pierattini, “Digital holographic microscope with automatic focus tracking by detecting sample displacement in real time,” Opt. Lett. 28, 1257–1259 (2003).
[CrossRef] [PubMed]

Demetrakopoulos, T. H.

DeNicola, S.

Depeursinge, C.

Dowski, Jr.

Edward, R.

Ferraro, P.

Finizio, A.

Fraser, S. E.

S. E. Fraser, “Crystal gazing in optical microscopy,” Nat. Bio. 21, 1272–1273 (2003).
[CrossRef]

Gabor, D.

D. Gabor, “Microscopy by reconstructed wave-fronts,” Proc. Royal Society A 197, 454–487 (1949).
[CrossRef]

Goodman, J.W.

J.W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11, 77–79 (1967).
[CrossRef]

Gracht, J. Van Der

Grilli, S.

G. Coppola, P. Ferraro, M. Iodice, S. De Nicola, A. Finizio, and S. Grilli, “A digital holographic microscope for complete characterization of microelectromechanical systems,” Meas. Sci. Technol. 15, 529–539 (2004).
[CrossRef]

P. Ferraro, S. DeNicola, A. Finizio, G. Coppola, S. Grilli, C. Magro, and G. Pierattini, “Compensation of the inherent wave front curvature in digital holographic coherent microscopy for quantitative phase-contrast imaging,” Appl. Opt. 42, 1938–1946 (2003).
[CrossRef] [PubMed]

S. Grilli, P. Ferraro, S. DeNicola, A. Finizio, G. Pierattini, and R. Meucci, “Whole optical wavefields reconstruction by digital holography,” Opt. Express. 9, 294–302 (2001).
[CrossRef] [PubMed]

Hausler, G.

G. Hausler, “A method to increase the depth of focus by two step image processing,” Opt. Commun. 6, 38 (1972).
[CrossRef]

Hooke, R.

R. Hooke, “Micrographia,” (Warnock Library, London, 1665).

Iodice, M.

G. Coppola, P. Ferraro, M. Iodice, S. De Nicola, A. Finizio, and S. Grilli, “A digital holographic microscope for complete characterization of microelectromechanical systems,” Meas. Sci. Technol. 15, 529–539 (2004).
[CrossRef]

Juptner, W.P.O.

U. Schnars and W.P.O. Juptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. 13, R85–R101 (2002).
[CrossRef]

Korpel, A.

Lawrence, R. W.

J.W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11, 77–79 (1967).
[CrossRef]

Magro, C.

Marks, D. L.

Mertz, L.

L. Mertz, “Transformation in Optics,” 101 (Wiley, New York, 1965).

Merzlyakov, N.S.

L. P. Yaroslavsky and N.S. Merzlyakov, “Methods of digital holography,” Consultants Bureau, New York (1980).

Meucci, R.

S. Grilli, P. Ferraro, S. DeNicola, A. Finizio, G. Pierattini, and R. Meucci, “Whole optical wavefields reconstruction by digital holography,” Opt. Express. 9, 294–302 (2001).
[CrossRef] [PubMed]

Mitra, R.

Pieper, R.J.

Pierattini, G.

Schnars, U.

U. Schnars and W.P.O. Juptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. 13, R85–R101 (2002).
[CrossRef]

Stack, D.L.

Yaroslavsky, L. P.

L. P. Yaroslavsky and N.S. Merzlyakov, “Methods of digital holography,” Consultants Bureau, New York (1980).

Appl. Opt. (4)

Appl. Phys. Lett. (1)

J.W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11, 77–79 (1967).
[CrossRef]

Meas. Sci. Technol. (2)

U. Schnars and W.P.O. Juptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. 13, R85–R101 (2002).
[CrossRef]

G. Coppola, P. Ferraro, M. Iodice, S. De Nicola, A. Finizio, and S. Grilli, “A digital holographic microscope for complete characterization of microelectromechanical systems,” Meas. Sci. Technol. 15, 529–539 (2004).
[CrossRef]

Nat. Bio. (1)

S. E. Fraser, “Crystal gazing in optical microscopy,” Nat. Bio. 21, 1272–1273 (2003).
[CrossRef]

Opt. Commun. (1)

G. Hausler, “A method to increase the depth of focus by two step image processing,” Opt. Commun. 6, 38 (1972).
[CrossRef]

Opt. Express. (1)

S. Grilli, P. Ferraro, S. DeNicola, A. Finizio, G. Pierattini, and R. Meucci, “Whole optical wavefields reconstruction by digital holography,” Opt. Express. 9, 294–302 (2001).
[CrossRef] [PubMed]

Opt. Lett. (4)

Proc. Royal Society A (1)

D. Gabor, “Microscopy by reconstructed wave-fronts,” Proc. Royal Society A 197, 454–487 (1949).
[CrossRef]

Other (5)

L. P. Yaroslavsky and N.S. Merzlyakov, “Methods of digital holography,” Consultants Bureau, New York (1980).

L. Mertz, “Transformation in Optics,” 101 (Wiley, New York, 1965).

R. Hooke, “Micrographia,” (Warnock Library, London, 1665).

D.L. Barton, et al “Wavefront coded imaging system for MEMS analysis”, Presented at international Society for testing and failure analysis meeting, Phoeneics, AZ (USA) (Nov. 2002).

For example, description of EFI capability and process in optical microscopes is into the web sites of two important manufacturers: http://www.olympusamerica.com/seg_section/msfive/ms5_appmod.asp;http://www.zeiss.de/C12567BE0045ACF1/InhaltFrame/DA8E39D74AA60C49412568B90054EDD2

Supplementary Material (1)

» Media 1: MOV (5548 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Qualitative drawing of the working principle of the EFI method. Stack of in-focus images (sequentially numbered) corresponding to different portions of the imaged object are stuck together to get an overall in-focus image (on the right).

Fig. 2.
Fig. 2.

Optical set-up of the digital holographic microscope.

Fig. 3.
Fig. 3.

Numerical reconstruction of the hologram of the cantilever beam (a) SEM image (b) hologram (c) wrapped phase map (d) 3D profile of the cantilever.

Fig. 4.
Fig. 4.

Conceptual flow chart describing how the EFI image is obtained by a Digital Holography approach.

Fig. 5.
Fig. 5.

Comparison of the microscopy and DH reconstruction method (a) in focus image of the base of the cantilever obtained by the microscope (b) Amplitude reconstruction of the base of the cantilever by DH method (c) In–focus image of the tip of the cantilever obtained by the microscope (d) Amplitude reconstruction of the tip of the cantilever by DH method (e) EFI image of the cantilever (f) reconstructed amplitude image of the cantilever by DH.

Fig. 6.
Fig. 6.

Movie (5.5 MB) of a sequence of images obtained by means of the optical microscope by changing the distance of microscope objective-MEMS and the reconstructed amplitude images of the same MEMS obtained by a single digital hologram but reconstructed numerically at different distances.

Fig. 7.
Fig. 7.

Comparison between conventional EFI technique and holographic EFI method (a) Conventional EFI image after stacking together in-focus images by microscope of portions of the cantilever beam (b) Holographic EFI of the cantilever by DH method as obtained by stacking of 50 reconstructed amplitude images from the 3D amplitude volume (c) combination of 3D plot of phase map and holographic EFI of the cantilever. Holographic EFI is obtained by only one image.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

OPD x y = λ 2 π φ x y
Δ q x y = M 2 Δ p x y
Δ q x y = M 2 Δ φ x y 4 π λ

Metrics