Abstract

We compare a recently developed coherent-scattering model for the reflectance of light from a turbid colloidal suspension of particles with experimental measurements. The experimental data were obtained in an internal reflection configuration around the critical angle using a glass prism in contact with a monodisperse colloidal suspension of latex particles, and a polydisperse suspension of TiO2 particles. First, we review the coherent scattering model and extend it to the case of polydisperse suspensions in an internal reflection configuration. The experimental data is then compared with results of the coherent scattering model and results obtained assuming that the colloidal system can be treated as a homogeneous medium with an effective index of refraction. We find that the experimental results are not compatible with the effective medium model. On the other hand, good fits to the experimental curves can be obtained with the coherent scattering model.

© 2005 Optical Society of America

PDF Article

References

  • View by:
  • |

  1. M. Lax, �??Multiple scattering of waves II. The effective field in dense systems�?? Phys. Rev. 85, 621 (1952).
    [CrossRef]
  2. L. Tsang and J. A. Kong, Scattering of electromagnetic waves: Advanced topics (Wiley, New York, 2001).
  3. L. Tsang and J. A. Kong, �??Effective propagation constants for coherent electromagnetic waves propagating in media embedded with dielectric scatterers�?? J. Appl. Phys. 53, 7162 (1982).
    [CrossRef]
  4. A. García-Valenzuela and R. G. Barrera, �??Electromagnetic response of a random half-space of Mie scatterers within the effective medium approximation and the determination of the effective optical coefficients�?? J. Quant. Spectrosc. Radiat. Transfer 627, 79 (2003).
  5. Y. Kuga, D. Rice and R. D. West, �??Propagation constant and the velocity of the coherent wave in a dense strongly scattering medium�?? IEEE Trans. Antennas Propag. 44 (3), 326 (1996).
    [CrossRef]
  6. C. Yang, A. Wax and M. S. Feld, �??Measurement of the anomalous phase velocity of ballistic light in a random medium by use of a novel interferometer�?? Opt. Lett. 26 (4), 235 (2001).
  7. R. G. Barrera and A. Garcia-Valenzuela, �??Coherent reflectance in a system of random Mie scatterers and its relation to the effective-medium approach�?? J. Opt. Soc. Am. A 20 (2), 296 (2003).
  8. A. Garcia-Valenzuela and R. G. Barrera, �??Optical reflectance of a composite medium with a sparse concentration of large spherical inclusions�?? Phys. Status Solidi B 240, 480 (2003).
  9. R. G. Barrera and A. Garcia-Valenzuela, �??Amperian magnetism in the dynamic response of granular materials�??, Developments in Mathematical and Experimental Physics, Volume B: Statistical Physics and Beyond, Edited by Macias et al. (Kluwer Academic, Plenum Publishers, 2003) pp. 147-170.
  10. A. Garcia-Valenzuela, C. Sánchez-Pérez, A. Reyes-Coronado, R. G. Barrera, �??Optical Characterization of a turbid colloid by light reflection around the critical angle�?? Materials Science and Applied Physics, 2nd Mexican Meeting on Mathematical and Experimental Physics, Eds. J L Hernández-Pozos, R Olayo-González, AIP Conference Proceedings 759, 62 (2005).
  11. C. F. Bohren, �??Applicability of effective medium theories to problems of scattering and absorption by non-homogeneous atmospheric particles�?? J. Atmos. Sci. 43, 468 (1986).
    [CrossRef]
  12. R. Ruppin, �??Evaluation of extended Maxwell Garnett theories�?? Opt. Commun. 182, 273 (2000).
    [CrossRef]
  13. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (J. Wiley & Sons, New York, 1983).
  14. H. C. van de Hulst, Light scattering by small particles (Wiley, New York, 1957).
  15. A. Chou and M. Kerker, �??The refractive index of colloidal sols�?? J. Phys. Chem. 60, 562 (1956).
    [CrossRef]
  16. J. V. Champion, G. H. Meeten and M. Senior, �??Refractive index of particles in the colloidal state�?? J. Chem. Soc., Faraday Trans. 74, 1319 (1978).
  17. K. Alexander, A. Killey, G. H. Meeten and M. Senior, �??Refractive index of concentrated colloidal dispersions�?? J. Chem. Soc. Farday Trans. 77, 361 (1981).
  18. G. H. Meeten and A. N. North , �??Refractive index measurement of turbid colloidal fluids by transmission near the critical angle�?? Meas. Sci. Technol. 2, 441 (1991).
    [CrossRef]
  19. G. H. Meeten and A. N. North , �??Refractive index measurement of absorbing and turbid fluids by reflection near the critical angle�?? Meas. Sci. Technol. 6, 214 (1995).
    [CrossRef]
  20. M. Mohammadi, �??Colloidal refractometry: meaning and measurement of refractive index for dispersions; the science that time forgot�?? Adv. Colloid & Interf. Sci. 62, 17 (1995).
  21. G. H. Meeten, �??Refraction by spherical particles in the intermediate scattering region�?? Opt. Comm. 134, 233 (1997).
  22. G. H. Meeten, �??Refractive index errors in the critical-angle and the Brewster-angle methods applied to absorbing and heterogeneous materials�?? Meas. Sci. Technol. 8, 728 (1997).
    [CrossRef]
  23. Y. Sarov, I. Capek, S. Janí�?ková, I. Kosti�?, A. Kone�?níková, L. Matay, V. Sarova, �??Properties of nano-scaled disperse media investigated by refractometric measurements�?? Vacuum 76, 231 (2004).
    [CrossRef]
  24. H. Ding, J. Q. Lu, K. M. Jacobs, X-H Hu, �??Determination of refractive indices of porcine skin tissues and intralipid at eight wavelengths between 325 and 1557 nm�??, J. Opt. Soc. Am. A 22 (6), 1151 (2005).
    [CrossRef]
  25. A. Garcia-Valenzuela, C. Sánchez-Pérez, R. G. Barrera, A Reyes-Coronado, �??Surface effects on the coherent reflection of light from a polydisperse colloid�??, to be submitted.
  26. F. Curiel, Predicción de propiedades ópticas de películas inhomogéneas por medio de modelos de transferencia radiativa y su aplicación en pinturas, Ph.D. Thesis (Instituto de Física, Universidad Nacional Autónoma de México, México D.F. (2004).

Adv. Colloid & Interf. Sci. (1)

M. Mohammadi, �??Colloidal refractometry: meaning and measurement of refractive index for dispersions; the science that time forgot�?? Adv. Colloid & Interf. Sci. 62, 17 (1995).

AIP Conference Proceedings (1)

A. Garcia-Valenzuela, C. Sánchez-Pérez, A. Reyes-Coronado, R. G. Barrera, �??Optical Characterization of a turbid colloid by light reflection around the critical angle�?? Materials Science and Applied Physics, 2nd Mexican Meeting on Mathematical and Experimental Physics, Eds. J L Hernández-Pozos, R Olayo-González, AIP Conference Proceedings 759, 62 (2005).

IEEE Trans. Antennas Propag. (1)

Y. Kuga, D. Rice and R. D. West, �??Propagation constant and the velocity of the coherent wave in a dense strongly scattering medium�?? IEEE Trans. Antennas Propag. 44 (3), 326 (1996).
[CrossRef]

J. Appl. Phys. (1)

L. Tsang and J. A. Kong, �??Effective propagation constants for coherent electromagnetic waves propagating in media embedded with dielectric scatterers�?? J. Appl. Phys. 53, 7162 (1982).
[CrossRef]

J. Atmos. Sci. (1)

C. F. Bohren, �??Applicability of effective medium theories to problems of scattering and absorption by non-homogeneous atmospheric particles�?? J. Atmos. Sci. 43, 468 (1986).
[CrossRef]

J. Chem. Soc. Farday Trans. (1)

K. Alexander, A. Killey, G. H. Meeten and M. Senior, �??Refractive index of concentrated colloidal dispersions�?? J. Chem. Soc. Farday Trans. 77, 361 (1981).

J. Chem. Soc., Faraday Trans. (1)

J. V. Champion, G. H. Meeten and M. Senior, �??Refractive index of particles in the colloidal state�?? J. Chem. Soc., Faraday Trans. 74, 1319 (1978).

J. Opt. Soc. Am. A (2)

J. Phys. Chem. (1)

A. Chou and M. Kerker, �??The refractive index of colloidal sols�?? J. Phys. Chem. 60, 562 (1956).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer (1)

A. García-Valenzuela and R. G. Barrera, �??Electromagnetic response of a random half-space of Mie scatterers within the effective medium approximation and the determination of the effective optical coefficients�?? J. Quant. Spectrosc. Radiat. Transfer 627, 79 (2003).

Meas. Sci. Technol. (3)

G. H. Meeten and A. N. North , �??Refractive index measurement of turbid colloidal fluids by transmission near the critical angle�?? Meas. Sci. Technol. 2, 441 (1991).
[CrossRef]

G. H. Meeten and A. N. North , �??Refractive index measurement of absorbing and turbid fluids by reflection near the critical angle�?? Meas. Sci. Technol. 6, 214 (1995).
[CrossRef]

G. H. Meeten, �??Refractive index errors in the critical-angle and the Brewster-angle methods applied to absorbing and heterogeneous materials�?? Meas. Sci. Technol. 8, 728 (1997).
[CrossRef]

Opt. Comm. (1)

G. H. Meeten, �??Refraction by spherical particles in the intermediate scattering region�?? Opt. Comm. 134, 233 (1997).

Opt. Commun. (1)

R. Ruppin, �??Evaluation of extended Maxwell Garnett theories�?? Opt. Commun. 182, 273 (2000).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. (1)

M. Lax, �??Multiple scattering of waves II. The effective field in dense systems�?? Phys. Rev. 85, 621 (1952).
[CrossRef]

Phys. Status Solidi B (1)

A. Garcia-Valenzuela and R. G. Barrera, �??Optical reflectance of a composite medium with a sparse concentration of large spherical inclusions�?? Phys. Status Solidi B 240, 480 (2003).

Vacuum (1)

Y. Sarov, I. Capek, S. Janí�?ková, I. Kosti�?, A. Kone�?níková, L. Matay, V. Sarova, �??Properties of nano-scaled disperse media investigated by refractometric measurements�?? Vacuum 76, 231 (2004).
[CrossRef]

Other (6)

L. Tsang and J. A. Kong, Scattering of electromagnetic waves: Advanced topics (Wiley, New York, 2001).

R. G. Barrera and A. Garcia-Valenzuela, �??Amperian magnetism in the dynamic response of granular materials�??, Developments in Mathematical and Experimental Physics, Volume B: Statistical Physics and Beyond, Edited by Macias et al. (Kluwer Academic, Plenum Publishers, 2003) pp. 147-170.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (J. Wiley & Sons, New York, 1983).

H. C. van de Hulst, Light scattering by small particles (Wiley, New York, 1957).

A. Garcia-Valenzuela, C. Sánchez-Pérez, R. G. Barrera, A Reyes-Coronado, �??Surface effects on the coherent reflection of light from a polydisperse colloid�??, to be submitted.

F. Curiel, Predicción de propiedades ópticas de películas inhomogéneas por medio de modelos de transferencia radiativa y su aplicación en pinturas, Ph.D. Thesis (Instituto de Física, Universidad Nacional Autónoma de México, México D.F. (2004).

Supplementary Material (1)

» Media 1: MOV (2467 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics