Abstract

Propagation invariant light fields such as Bessel light beams are of interest in a variety of current areas such as micromanipulation of atoms and mesoscopic particles, laser plasmas, and the study of optical angular momentum. Considering the optical fields as a superposition of conical waves, we discuss how the coherence properties of light play a key role in their formation. As an example, we show that Bessel beams can be created from temporally incoherent broadband light sources including a halogen bulb. By using a supercontinuum source we elucidate how the beam behaves as a function of bandwidth of the incident light field.

© 2005 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Propagation characteristics of Bessel beams generated by continuous, incoherent light sources

Ceren Altıngöz, Berna Yalızay, and Selcuk Akturk
J. Opt. Soc. Am. A 32(8) 1567-1575 (2015)

White light Bessel-like beams generated by miniature all-fiber device

X. Zhu, A. Schülzgen, H. Wei, K. Kieu, and N. Peyghambarian
Opt. Express 19(12) 11365-11374 (2011)

Space-time coherence of polychromatic propagation-invariant fields

Jari Turunen
Opt. Express 16(25) 20283-20294 (2008)

References

  • View by:
  • |
  • |
  • |

  1. J. Durnin, J.J. Miceli, and J.H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 581499–1501 (1987).
    [Crossref] [PubMed]
  2. J. Arlt, K. Dholakia, J. Soneson, and E. M. Wright, “Optical dipole traps and atomic waveguides based on Bessel light beams,” Phys. Rev. A 63, 063602 (2001).
    [Crossref]
  3. J. H. McLeod, “The Axicon: A new type of optical element,” J. Opt. Soc. Am. 44, 592–597 (1954).
    [Crossref]
  4. J. Arlt, V. Garces-Chavez, W. Sibbett, and K. Dholakia, “Optical micromanipulation using a Bessel light beam,” Opt. Commun. 197, 239–245 (2000).
    [Crossref]
  5. J. Fan, E. Parra, I. Alexeev, K. Y. Kim, H. M. Milchberg, L. Ya. Margolin, and L. N. Pyatnitskii, “Tubular Plasma Generation With a High-Power Hollow Bessel Beam,” Phys. Rev. E 62, R7603 (2000).
    [Crossref]
  6. T. Wulle and S. Herminghaus, “Nonlinear Optics of Bessel Beams,” Phys. Rev. Lett. 70, 1401–1404 (1993).
    [Crossref] [PubMed]
  7. M. Fortin, M. Piché, and E.F. Borra, “Optical tests with Bessel beam interferometry,” Opt. Express 12, 5887–5895 (2004).
    [Crossref] [PubMed]
  8. R. Grunwald, U. Grieber, F. Tschirschwitz, E.T.J. Nibbering, T. Elsaesser, V. Kebbel, H.-J. Hartmann, and W. Jueptner, “Generation of femtosecond Bessel beams with microaxicon arrays,” Opt. Lett. 25, 981–983 (2000).
    [Crossref]
  9. P. Saari and K. Reivelt “Evidence of X-shaped propagation invariant localized light waves,” Phys. Rev. Lett. 79, 4135–4138 (1997).
    [Crossref]
  10. D. McGloin and K. Dholakia, “Bessel beams: diffraction in a new light,” Contemporary Physics 46, 15–28 (2005).
    [Crossref]
  11. A. Vasara, J. Turunen, and A.T. Friberg, “Realization of general nondiffracting beams with computer generated holograms” J. Opt. Soc. Am. A 6, 1748–1754 (1989).
    [Crossref] [PubMed]
  12. R. Piestun and J. Shamir, “Control of wave-front propagation with diffractive elements,” Opt. Lett. 19, 771–773 (1994).
    [Crossref] [PubMed]
  13. L. Basano and P. Ottonello, “Demonstration experiments on nondiffracting beams generated by thermal light” Am. J. Phys 73, 826–830 (2005).
    [Crossref]
  14. M. W. Kowarz and G. S. Agarwal, “Bessel-beam representation for partially coherent fields,” J. Opt. Soc. Am. A 12, 1324–1330 (1995).
    [Crossref]
  15. A. V. Shchegrov and E. Wolf, “Partially coherent beams,” Opt. Lett. 25, 141–143 (2000).
    [Crossref]
  16. K. Ishii, R. Zoshida, and T. Iwai “Single scattering spectroscopy for extremely dense colloidal suspensions by use of a low-coherence interferometer,” Opt. Lett. 30, 555–7 (2005).
    [Crossref] [PubMed]
  17. Z. Ding, H. Ren, Y. Zhao, J. S. Nelson, and Z. Chen, “High-resolution optical coherence tomography over a large depth range with an Axicon lens,” Opt. Lett. 27, 243–5 (2002).
    [Crossref]

2005 (3)

D. McGloin and K. Dholakia, “Bessel beams: diffraction in a new light,” Contemporary Physics 46, 15–28 (2005).
[Crossref]

L. Basano and P. Ottonello, “Demonstration experiments on nondiffracting beams generated by thermal light” Am. J. Phys 73, 826–830 (2005).
[Crossref]

K. Ishii, R. Zoshida, and T. Iwai “Single scattering spectroscopy for extremely dense colloidal suspensions by use of a low-coherence interferometer,” Opt. Lett. 30, 555–7 (2005).
[Crossref] [PubMed]

2004 (1)

2002 (1)

2001 (1)

J. Arlt, K. Dholakia, J. Soneson, and E. M. Wright, “Optical dipole traps and atomic waveguides based on Bessel light beams,” Phys. Rev. A 63, 063602 (2001).
[Crossref]

2000 (4)

R. Grunwald, U. Grieber, F. Tschirschwitz, E.T.J. Nibbering, T. Elsaesser, V. Kebbel, H.-J. Hartmann, and W. Jueptner, “Generation of femtosecond Bessel beams with microaxicon arrays,” Opt. Lett. 25, 981–983 (2000).
[Crossref]

A. V. Shchegrov and E. Wolf, “Partially coherent beams,” Opt. Lett. 25, 141–143 (2000).
[Crossref]

J. Arlt, V. Garces-Chavez, W. Sibbett, and K. Dholakia, “Optical micromanipulation using a Bessel light beam,” Opt. Commun. 197, 239–245 (2000).
[Crossref]

J. Fan, E. Parra, I. Alexeev, K. Y. Kim, H. M. Milchberg, L. Ya. Margolin, and L. N. Pyatnitskii, “Tubular Plasma Generation With a High-Power Hollow Bessel Beam,” Phys. Rev. E 62, R7603 (2000).
[Crossref]

1997 (1)

P. Saari and K. Reivelt “Evidence of X-shaped propagation invariant localized light waves,” Phys. Rev. Lett. 79, 4135–4138 (1997).
[Crossref]

1995 (1)

1994 (1)

1993 (1)

T. Wulle and S. Herminghaus, “Nonlinear Optics of Bessel Beams,” Phys. Rev. Lett. 70, 1401–1404 (1993).
[Crossref] [PubMed]

1989 (1)

1987 (1)

J. Durnin, J.J. Miceli, and J.H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 581499–1501 (1987).
[Crossref] [PubMed]

1954 (1)

Agarwal, G. S.

Alexeev, I.

J. Fan, E. Parra, I. Alexeev, K. Y. Kim, H. M. Milchberg, L. Ya. Margolin, and L. N. Pyatnitskii, “Tubular Plasma Generation With a High-Power Hollow Bessel Beam,” Phys. Rev. E 62, R7603 (2000).
[Crossref]

Arlt, J.

J. Arlt, K. Dholakia, J. Soneson, and E. M. Wright, “Optical dipole traps and atomic waveguides based on Bessel light beams,” Phys. Rev. A 63, 063602 (2001).
[Crossref]

J. Arlt, V. Garces-Chavez, W. Sibbett, and K. Dholakia, “Optical micromanipulation using a Bessel light beam,” Opt. Commun. 197, 239–245 (2000).
[Crossref]

Basano, L.

L. Basano and P. Ottonello, “Demonstration experiments on nondiffracting beams generated by thermal light” Am. J. Phys 73, 826–830 (2005).
[Crossref]

Borra, E.F.

Chen, Z.

Dholakia, K.

D. McGloin and K. Dholakia, “Bessel beams: diffraction in a new light,” Contemporary Physics 46, 15–28 (2005).
[Crossref]

J. Arlt, K. Dholakia, J. Soneson, and E. M. Wright, “Optical dipole traps and atomic waveguides based on Bessel light beams,” Phys. Rev. A 63, 063602 (2001).
[Crossref]

J. Arlt, V. Garces-Chavez, W. Sibbett, and K. Dholakia, “Optical micromanipulation using a Bessel light beam,” Opt. Commun. 197, 239–245 (2000).
[Crossref]

Ding, Z.

Durnin, J.

J. Durnin, J.J. Miceli, and J.H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 581499–1501 (1987).
[Crossref] [PubMed]

Eberly, J.H.

J. Durnin, J.J. Miceli, and J.H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 581499–1501 (1987).
[Crossref] [PubMed]

Elsaesser, T.

Fan, J.

J. Fan, E. Parra, I. Alexeev, K. Y. Kim, H. M. Milchberg, L. Ya. Margolin, and L. N. Pyatnitskii, “Tubular Plasma Generation With a High-Power Hollow Bessel Beam,” Phys. Rev. E 62, R7603 (2000).
[Crossref]

Fortin, M.

Friberg, A.T.

Garces-Chavez, V.

J. Arlt, V. Garces-Chavez, W. Sibbett, and K. Dholakia, “Optical micromanipulation using a Bessel light beam,” Opt. Commun. 197, 239–245 (2000).
[Crossref]

Grieber, U.

Grunwald, R.

Hartmann, H.-J.

Herminghaus, S.

T. Wulle and S. Herminghaus, “Nonlinear Optics of Bessel Beams,” Phys. Rev. Lett. 70, 1401–1404 (1993).
[Crossref] [PubMed]

Ishii, K.

Iwai, T.

Jueptner, W.

Kebbel, V.

Kim, K. Y.

J. Fan, E. Parra, I. Alexeev, K. Y. Kim, H. M. Milchberg, L. Ya. Margolin, and L. N. Pyatnitskii, “Tubular Plasma Generation With a High-Power Hollow Bessel Beam,” Phys. Rev. E 62, R7603 (2000).
[Crossref]

Kowarz, M. W.

Margolin, L. Ya.

J. Fan, E. Parra, I. Alexeev, K. Y. Kim, H. M. Milchberg, L. Ya. Margolin, and L. N. Pyatnitskii, “Tubular Plasma Generation With a High-Power Hollow Bessel Beam,” Phys. Rev. E 62, R7603 (2000).
[Crossref]

McGloin, D.

D. McGloin and K. Dholakia, “Bessel beams: diffraction in a new light,” Contemporary Physics 46, 15–28 (2005).
[Crossref]

McLeod, J. H.

Miceli, J.J.

J. Durnin, J.J. Miceli, and J.H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 581499–1501 (1987).
[Crossref] [PubMed]

Milchberg, H. M.

J. Fan, E. Parra, I. Alexeev, K. Y. Kim, H. M. Milchberg, L. Ya. Margolin, and L. N. Pyatnitskii, “Tubular Plasma Generation With a High-Power Hollow Bessel Beam,” Phys. Rev. E 62, R7603 (2000).
[Crossref]

Nelson, J. S.

Nibbering, E.T.J.

Ottonello, P.

L. Basano and P. Ottonello, “Demonstration experiments on nondiffracting beams generated by thermal light” Am. J. Phys 73, 826–830 (2005).
[Crossref]

Parra, E.

J. Fan, E. Parra, I. Alexeev, K. Y. Kim, H. M. Milchberg, L. Ya. Margolin, and L. N. Pyatnitskii, “Tubular Plasma Generation With a High-Power Hollow Bessel Beam,” Phys. Rev. E 62, R7603 (2000).
[Crossref]

Piché, M.

Piestun, R.

Pyatnitskii, L. N.

J. Fan, E. Parra, I. Alexeev, K. Y. Kim, H. M. Milchberg, L. Ya. Margolin, and L. N. Pyatnitskii, “Tubular Plasma Generation With a High-Power Hollow Bessel Beam,” Phys. Rev. E 62, R7603 (2000).
[Crossref]

Reivelt, K.

P. Saari and K. Reivelt “Evidence of X-shaped propagation invariant localized light waves,” Phys. Rev. Lett. 79, 4135–4138 (1997).
[Crossref]

Ren, H.

Saari, P.

P. Saari and K. Reivelt “Evidence of X-shaped propagation invariant localized light waves,” Phys. Rev. Lett. 79, 4135–4138 (1997).
[Crossref]

Shamir, J.

Shchegrov, A. V.

Sibbett, W.

J. Arlt, V. Garces-Chavez, W. Sibbett, and K. Dholakia, “Optical micromanipulation using a Bessel light beam,” Opt. Commun. 197, 239–245 (2000).
[Crossref]

Soneson, J.

J. Arlt, K. Dholakia, J. Soneson, and E. M. Wright, “Optical dipole traps and atomic waveguides based on Bessel light beams,” Phys. Rev. A 63, 063602 (2001).
[Crossref]

Tschirschwitz, F.

Turunen, J.

Vasara, A.

Wolf, E.

Wright, E. M.

J. Arlt, K. Dholakia, J. Soneson, and E. M. Wright, “Optical dipole traps and atomic waveguides based on Bessel light beams,” Phys. Rev. A 63, 063602 (2001).
[Crossref]

Wulle, T.

T. Wulle and S. Herminghaus, “Nonlinear Optics of Bessel Beams,” Phys. Rev. Lett. 70, 1401–1404 (1993).
[Crossref] [PubMed]

Zhao, Y.

Zoshida, R.

Am. J. Phys (1)

L. Basano and P. Ottonello, “Demonstration experiments on nondiffracting beams generated by thermal light” Am. J. Phys 73, 826–830 (2005).
[Crossref]

Contemporary Physics (1)

D. McGloin and K. Dholakia, “Bessel beams: diffraction in a new light,” Contemporary Physics 46, 15–28 (2005).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (2)

Opt. Commun. (1)

J. Arlt, V. Garces-Chavez, W. Sibbett, and K. Dholakia, “Optical micromanipulation using a Bessel light beam,” Opt. Commun. 197, 239–245 (2000).
[Crossref]

Opt. Express (1)

Opt. Lett. (5)

Phys. Rev. A (1)

J. Arlt, K. Dholakia, J. Soneson, and E. M. Wright, “Optical dipole traps and atomic waveguides based on Bessel light beams,” Phys. Rev. A 63, 063602 (2001).
[Crossref]

Phys. Rev. E (1)

J. Fan, E. Parra, I. Alexeev, K. Y. Kim, H. M. Milchberg, L. Ya. Margolin, and L. N. Pyatnitskii, “Tubular Plasma Generation With a High-Power Hollow Bessel Beam,” Phys. Rev. E 62, R7603 (2000).
[Crossref]

Phys. Rev. Lett. (3)

T. Wulle and S. Herminghaus, “Nonlinear Optics of Bessel Beams,” Phys. Rev. Lett. 70, 1401–1404 (1993).
[Crossref] [PubMed]

J. Durnin, J.J. Miceli, and J.H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 581499–1501 (1987).
[Crossref] [PubMed]

P. Saari and K. Reivelt “Evidence of X-shaped propagation invariant localized light waves,” Phys. Rev. Lett. 79, 4135–4138 (1997).
[Crossref]

Supplementary Material (1)

» Media 1: GIF (215 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Calculated Bessel beam profiles with λ,=0.79 μm, Δω/ω=0.19, n=1.5 and γ=1°, giving rcr=330 μm and Nfr≈ 7.

Fig. 2.
Fig. 2.

Beam profiles modelocked (Bandwidth 90 nm (FWHM) centred around 790nm ΔωFWHM0 = 0.114) and continuous wave (Bandwidth 3 nm (FWHM) centred around 780nm, ΔωFWHM0 = 0.0038.

Fig. 3.
Fig. 3.

(a) Measured fluence profiles of generated Bessel beams for propagation distance between 13–21 mm, and (b) the calculated beam profile from the model.

Fig. 4.
Fig. 4.

Bessel Beam generated from a superluminescent photodiode.

Fig. 5.
Fig. 5.

Bessel beam generated from a white light halogen bulb. Beam profile taken with a camera.

Fig. 6.
Fig. 6.

(a) Visible part of the spectrum split by a prism. (b) Spectrum measured with a spectrometer (sensitive in the range 500 – 1100 nm).

Fig. 7.
Fig. 7.

(a) Picture of the visible part of the Bessel beam generated from a supercontinuum. (b) Model predictions for the spectrum in fig 9a where a dominant peak around λ=580nm with a width of 20 nm is present of the fluence profile (ΔωFWHM0 = 0.0344).

Fig. 8.
Fig. 8.

Intensity profiles taken with interference filters at (a) 500nm (b) 600nm (c) 700nm (d) 850nm, each with a bandwidth of 40nm. [Media 1]

Tables (2)

Tables Icon

Table 1. Overview and characterisation of the light sources used, where λ is the wavelength, Δλ. the bandwidth, ΔωFWHM0 the relative bandwidth, and lc the coherence length.

Tables Icon

Table 2. Overview of the Bessel beams generated from the different light sources, where γ is the apex angle of the Axicon, w0 the incoming beam spot size, exp. zmax and theor. zmax the experimental and theoretical ranges for the Bessel beam, r0 the radius of the central spot, rcritical the critical radius (Eq. 6), and Nfr the number of fringes (Eq. 7).

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

F r z = dt E r z t 2 = d Ω E r z Ω 2
E r z = 0 , Ω = E 0 S ( Ω ) e r 2 w 0 2 e ( Ω )
E r z = z max 2 , Ω = E 0 S ( Ω ) e i ( ϕ ( Ω ) kr 2 2 z k r 2 z 2 k ) f z Ω J 0 ( k r ( Ω ) r )
F ( r ) = F ( r , z max 2 ) F 0 ( z max 2 ) = d Ω S ( Ω ) J 0 2 ( k r ( Ω ) r ) = d Ω S ( Ω ) J 0 2 ( k r ( Ω ) r )
S ( Ω ) = 1 π Δ ω e Ω 2 Δ ω 2
( r cr λ ) = 1 4 ( n 1 ) γ ( Δ ω ω 0 ) = 1.67 4 ( n 1 ) γ ( Δ ω FWHM ω 0 )
N fr Int ( 2 k r ( 0 ) r c π 2 2 π ) Int ( 1.67 ( Δ ω FWHM ω ) 1 1 2 2 )

Metrics