Abstract

Techniques based on laser scanning microscopes for nanoprocessing of periodic structures on silicon with ultra-short laser pulses have been developed. Ripples of 800–900 nm spacing were obtained after laser irradiation at a wavelength of 1040 nm, a repetition rate of 10 kHz and a fluence of 2 J/cm2 in air. Smaller features of 70–100nm spacing were achieved in oil at a wavelength of 800 nm, a repetition rate of 90 MHz and a fluence of 200–300 mJ/cm2 by using a high numerical focusing objective.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Pedraza, J. D. Fowlkes, and D. H. Lowndes, “Self-organized silicon microcolumn arrays generated by pulsed laser irradiation,” Appl. Phys. A 69, 731 (1999)
    [Crossref]
  2. J. Pedraza, J. D. Fowlkes, and Y. F. Guan, “Surface nanostructuring of silicon,” Appl. Phys. A 77, 277 (2003)
  3. N. Bärsch, K. Körber, A. Ostendorf, and K.H. Tönshoff, “Ablation and cutting of planar silicon devices using femtosecond laser pulses,” Appl. Phys. A 77, 237 (2003)
  4. T. H. Her, R. J. Finlay, C. Wu, and E. Mazur, “Femtosecond laser-induced formation of spikes on silicon,” Appl. Phys.A 70, 383 (2000)
    [Crossref]
  5. S. Ameer-Beg, W. Perrie, S. Rathbone, J. Wright, W. Weaver, and H. Champoux, “Femtosecond laser microstructuring of materials,” Appl. Surf. Sci. 127–129, 875 (1999)
  6. M. Weingärtner, R. Elschner, and O. Bostanjoglo, “Patterning of silicon - Differences between ns and fs laser pulses,” Appl. Surf. Sci. 138–139, 499 (1999)
    [Crossref]
  7. C. H. Crouch, J. E. Carey, J. M. Warrender, M. J. Aziz, E. Mazur, and F. Y. Génin, “Comparison of structure and properties of femtosecond and nanosecond laser-structured silicon,” Appl. Phys. Lett. 84, 1850 (2004)
    [Crossref]
  8. A. Cavalleri, K. Sokolowski-Tinten, J. Bialkowski, M. Schreiner, and D. Von der Linde, “Femtosecond melting and ablation of semiconductors studied with time of flight mass spectroscopy,” J. Appl. Phys. 85, 3301 (1999)
    [Crossref]
  9. G. Daminelli, J. Krüger, and W. Kautek, “Femtosecond laser interaction with silicon under water confinement”, Thin Solid Films 467, 334 (2004)
    [Crossref]
  10. Z. Guosheng, P. M. Fauchet, and A. E. Siegman, “Growth of spontaneous periodic surface structures on solids during laser illumination,” Phys. Rev. B 26, 5366 (1982)
    [Crossref]
  11. J. F. Young, J. S. Preston, H. M. van Driel, and J. E. Sipe, “Laser-induced periodic surface structure. II. Experiments on Ge, Si, Al, and brass,” Phys. Rev. B 27, 1155 (1983)
    [Crossref]
  12. D. Bäuerle, Laser Processing and Chemistry (Springer-Verlag, Berlin, Heidelberg, New York2000)
  13. P. M. Fauchet and A. E. Siegman, “Surface ripples on silicon and gallium arsenide under picosecond laser illumination,” Appl. Phys. Lett. 40, 824 (1982)
    [Crossref]
  14. J. E. Sipe, J. F. Young, J. S. Preston, and H. M. Van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B 27, 1141 (1983)
    [Crossref]
  15. A. Borowiec, M. Mackenzie, G. C. Weatherly, and H. K. Haugen, “Transmission and scanning electron microscopy studies of single femtosecond-laser-pulse ablation of silicon,” Appl. Phys. A 76, 201 (2003)
    [Crossref]
  16. M. Y. Shen, C. H. Crouch, J. E. Carey, and E. Mazur. “Femtosecond laser-inducedformation of submicrometer spikes on silicon in water”, Appl. Phys. Lett. 85, 5694 (2004)
    [Crossref]
  17. W. Kautek, P. Rudolph, G. Daminelli, and J. Krüger, “Physico-chemical aspects of femtosecond-pulse-laser-induced surface nanostructure”, Appl. Phys. A. 81, 65 (2005)
    [Crossref]
  18. C. B. Schaffer, A. Brodeur, J. F. Garcia, and E. Mazur, “Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy,” Opt. Lett. 26, 93 (2001)
    [Crossref]

2005 (1)

W. Kautek, P. Rudolph, G. Daminelli, and J. Krüger, “Physico-chemical aspects of femtosecond-pulse-laser-induced surface nanostructure”, Appl. Phys. A. 81, 65 (2005)
[Crossref]

2004 (3)

M. Y. Shen, C. H. Crouch, J. E. Carey, and E. Mazur. “Femtosecond laser-inducedformation of submicrometer spikes on silicon in water”, Appl. Phys. Lett. 85, 5694 (2004)
[Crossref]

C. H. Crouch, J. E. Carey, J. M. Warrender, M. J. Aziz, E. Mazur, and F. Y. Génin, “Comparison of structure and properties of femtosecond and nanosecond laser-structured silicon,” Appl. Phys. Lett. 84, 1850 (2004)
[Crossref]

G. Daminelli, J. Krüger, and W. Kautek, “Femtosecond laser interaction with silicon under water confinement”, Thin Solid Films 467, 334 (2004)
[Crossref]

2003 (3)

J. Pedraza, J. D. Fowlkes, and Y. F. Guan, “Surface nanostructuring of silicon,” Appl. Phys. A 77, 277 (2003)

N. Bärsch, K. Körber, A. Ostendorf, and K.H. Tönshoff, “Ablation and cutting of planar silicon devices using femtosecond laser pulses,” Appl. Phys. A 77, 237 (2003)

A. Borowiec, M. Mackenzie, G. C. Weatherly, and H. K. Haugen, “Transmission and scanning electron microscopy studies of single femtosecond-laser-pulse ablation of silicon,” Appl. Phys. A 76, 201 (2003)
[Crossref]

2001 (1)

2000 (1)

T. H. Her, R. J. Finlay, C. Wu, and E. Mazur, “Femtosecond laser-induced formation of spikes on silicon,” Appl. Phys.A 70, 383 (2000)
[Crossref]

1999 (4)

S. Ameer-Beg, W. Perrie, S. Rathbone, J. Wright, W. Weaver, and H. Champoux, “Femtosecond laser microstructuring of materials,” Appl. Surf. Sci. 127–129, 875 (1999)

M. Weingärtner, R. Elschner, and O. Bostanjoglo, “Patterning of silicon - Differences between ns and fs laser pulses,” Appl. Surf. Sci. 138–139, 499 (1999)
[Crossref]

A. Cavalleri, K. Sokolowski-Tinten, J. Bialkowski, M. Schreiner, and D. Von der Linde, “Femtosecond melting and ablation of semiconductors studied with time of flight mass spectroscopy,” J. Appl. Phys. 85, 3301 (1999)
[Crossref]

J. Pedraza, J. D. Fowlkes, and D. H. Lowndes, “Self-organized silicon microcolumn arrays generated by pulsed laser irradiation,” Appl. Phys. A 69, 731 (1999)
[Crossref]

1983 (2)

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. Van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B 27, 1141 (1983)
[Crossref]

J. F. Young, J. S. Preston, H. M. van Driel, and J. E. Sipe, “Laser-induced periodic surface structure. II. Experiments on Ge, Si, Al, and brass,” Phys. Rev. B 27, 1155 (1983)
[Crossref]

1982 (2)

P. M. Fauchet and A. E. Siegman, “Surface ripples on silicon and gallium arsenide under picosecond laser illumination,” Appl. Phys. Lett. 40, 824 (1982)
[Crossref]

Z. Guosheng, P. M. Fauchet, and A. E. Siegman, “Growth of spontaneous periodic surface structures on solids during laser illumination,” Phys. Rev. B 26, 5366 (1982)
[Crossref]

Ameer-Beg, S.

S. Ameer-Beg, W. Perrie, S. Rathbone, J. Wright, W. Weaver, and H. Champoux, “Femtosecond laser microstructuring of materials,” Appl. Surf. Sci. 127–129, 875 (1999)

Aziz, M. J.

C. H. Crouch, J. E. Carey, J. M. Warrender, M. J. Aziz, E. Mazur, and F. Y. Génin, “Comparison of structure and properties of femtosecond and nanosecond laser-structured silicon,” Appl. Phys. Lett. 84, 1850 (2004)
[Crossref]

Bärsch, N.

N. Bärsch, K. Körber, A. Ostendorf, and K.H. Tönshoff, “Ablation and cutting of planar silicon devices using femtosecond laser pulses,” Appl. Phys. A 77, 237 (2003)

Bäuerle, D.

D. Bäuerle, Laser Processing and Chemistry (Springer-Verlag, Berlin, Heidelberg, New York2000)

Bialkowski, J.

A. Cavalleri, K. Sokolowski-Tinten, J. Bialkowski, M. Schreiner, and D. Von der Linde, “Femtosecond melting and ablation of semiconductors studied with time of flight mass spectroscopy,” J. Appl. Phys. 85, 3301 (1999)
[Crossref]

Borowiec, A.

A. Borowiec, M. Mackenzie, G. C. Weatherly, and H. K. Haugen, “Transmission and scanning electron microscopy studies of single femtosecond-laser-pulse ablation of silicon,” Appl. Phys. A 76, 201 (2003)
[Crossref]

Bostanjoglo, O.

M. Weingärtner, R. Elschner, and O. Bostanjoglo, “Patterning of silicon - Differences between ns and fs laser pulses,” Appl. Surf. Sci. 138–139, 499 (1999)
[Crossref]

Brodeur, A.

Carey, J. E.

M. Y. Shen, C. H. Crouch, J. E. Carey, and E. Mazur. “Femtosecond laser-inducedformation of submicrometer spikes on silicon in water”, Appl. Phys. Lett. 85, 5694 (2004)
[Crossref]

C. H. Crouch, J. E. Carey, J. M. Warrender, M. J. Aziz, E. Mazur, and F. Y. Génin, “Comparison of structure and properties of femtosecond and nanosecond laser-structured silicon,” Appl. Phys. Lett. 84, 1850 (2004)
[Crossref]

Cavalleri, A.

A. Cavalleri, K. Sokolowski-Tinten, J. Bialkowski, M. Schreiner, and D. Von der Linde, “Femtosecond melting and ablation of semiconductors studied with time of flight mass spectroscopy,” J. Appl. Phys. 85, 3301 (1999)
[Crossref]

Champoux, H.

S. Ameer-Beg, W. Perrie, S. Rathbone, J. Wright, W. Weaver, and H. Champoux, “Femtosecond laser microstructuring of materials,” Appl. Surf. Sci. 127–129, 875 (1999)

Crouch, C. H.

C. H. Crouch, J. E. Carey, J. M. Warrender, M. J. Aziz, E. Mazur, and F. Y. Génin, “Comparison of structure and properties of femtosecond and nanosecond laser-structured silicon,” Appl. Phys. Lett. 84, 1850 (2004)
[Crossref]

M. Y. Shen, C. H. Crouch, J. E. Carey, and E. Mazur. “Femtosecond laser-inducedformation of submicrometer spikes on silicon in water”, Appl. Phys. Lett. 85, 5694 (2004)
[Crossref]

Daminelli, G.

W. Kautek, P. Rudolph, G. Daminelli, and J. Krüger, “Physico-chemical aspects of femtosecond-pulse-laser-induced surface nanostructure”, Appl. Phys. A. 81, 65 (2005)
[Crossref]

G. Daminelli, J. Krüger, and W. Kautek, “Femtosecond laser interaction with silicon under water confinement”, Thin Solid Films 467, 334 (2004)
[Crossref]

Elschner, R.

M. Weingärtner, R. Elschner, and O. Bostanjoglo, “Patterning of silicon - Differences between ns and fs laser pulses,” Appl. Surf. Sci. 138–139, 499 (1999)
[Crossref]

Fauchet, P. M.

Z. Guosheng, P. M. Fauchet, and A. E. Siegman, “Growth of spontaneous periodic surface structures on solids during laser illumination,” Phys. Rev. B 26, 5366 (1982)
[Crossref]

P. M. Fauchet and A. E. Siegman, “Surface ripples on silicon and gallium arsenide under picosecond laser illumination,” Appl. Phys. Lett. 40, 824 (1982)
[Crossref]

Finlay, R. J.

T. H. Her, R. J. Finlay, C. Wu, and E. Mazur, “Femtosecond laser-induced formation of spikes on silicon,” Appl. Phys.A 70, 383 (2000)
[Crossref]

Fowlkes, J. D.

J. Pedraza, J. D. Fowlkes, and Y. F. Guan, “Surface nanostructuring of silicon,” Appl. Phys. A 77, 277 (2003)

J. Pedraza, J. D. Fowlkes, and D. H. Lowndes, “Self-organized silicon microcolumn arrays generated by pulsed laser irradiation,” Appl. Phys. A 69, 731 (1999)
[Crossref]

Garcia, J. F.

Génin, F. Y.

C. H. Crouch, J. E. Carey, J. M. Warrender, M. J. Aziz, E. Mazur, and F. Y. Génin, “Comparison of structure and properties of femtosecond and nanosecond laser-structured silicon,” Appl. Phys. Lett. 84, 1850 (2004)
[Crossref]

Guan, Y. F.

J. Pedraza, J. D. Fowlkes, and Y. F. Guan, “Surface nanostructuring of silicon,” Appl. Phys. A 77, 277 (2003)

Guosheng, Z.

Z. Guosheng, P. M. Fauchet, and A. E. Siegman, “Growth of spontaneous periodic surface structures on solids during laser illumination,” Phys. Rev. B 26, 5366 (1982)
[Crossref]

Haugen, H. K.

A. Borowiec, M. Mackenzie, G. C. Weatherly, and H. K. Haugen, “Transmission and scanning electron microscopy studies of single femtosecond-laser-pulse ablation of silicon,” Appl. Phys. A 76, 201 (2003)
[Crossref]

Her, T. H.

T. H. Her, R. J. Finlay, C. Wu, and E. Mazur, “Femtosecond laser-induced formation of spikes on silicon,” Appl. Phys.A 70, 383 (2000)
[Crossref]

Kautek, W.

W. Kautek, P. Rudolph, G. Daminelli, and J. Krüger, “Physico-chemical aspects of femtosecond-pulse-laser-induced surface nanostructure”, Appl. Phys. A. 81, 65 (2005)
[Crossref]

G. Daminelli, J. Krüger, and W. Kautek, “Femtosecond laser interaction with silicon under water confinement”, Thin Solid Films 467, 334 (2004)
[Crossref]

Körber, K.

N. Bärsch, K. Körber, A. Ostendorf, and K.H. Tönshoff, “Ablation and cutting of planar silicon devices using femtosecond laser pulses,” Appl. Phys. A 77, 237 (2003)

Krüger, J.

W. Kautek, P. Rudolph, G. Daminelli, and J. Krüger, “Physico-chemical aspects of femtosecond-pulse-laser-induced surface nanostructure”, Appl. Phys. A. 81, 65 (2005)
[Crossref]

G. Daminelli, J. Krüger, and W. Kautek, “Femtosecond laser interaction with silicon under water confinement”, Thin Solid Films 467, 334 (2004)
[Crossref]

Lowndes, D. H.

J. Pedraza, J. D. Fowlkes, and D. H. Lowndes, “Self-organized silicon microcolumn arrays generated by pulsed laser irradiation,” Appl. Phys. A 69, 731 (1999)
[Crossref]

Mackenzie, M.

A. Borowiec, M. Mackenzie, G. C. Weatherly, and H. K. Haugen, “Transmission and scanning electron microscopy studies of single femtosecond-laser-pulse ablation of silicon,” Appl. Phys. A 76, 201 (2003)
[Crossref]

Mazur, E.

M. Y. Shen, C. H. Crouch, J. E. Carey, and E. Mazur. “Femtosecond laser-inducedformation of submicrometer spikes on silicon in water”, Appl. Phys. Lett. 85, 5694 (2004)
[Crossref]

C. H. Crouch, J. E. Carey, J. M. Warrender, M. J. Aziz, E. Mazur, and F. Y. Génin, “Comparison of structure and properties of femtosecond and nanosecond laser-structured silicon,” Appl. Phys. Lett. 84, 1850 (2004)
[Crossref]

C. B. Schaffer, A. Brodeur, J. F. Garcia, and E. Mazur, “Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy,” Opt. Lett. 26, 93 (2001)
[Crossref]

T. H. Her, R. J. Finlay, C. Wu, and E. Mazur, “Femtosecond laser-induced formation of spikes on silicon,” Appl. Phys.A 70, 383 (2000)
[Crossref]

Ostendorf, A.

N. Bärsch, K. Körber, A. Ostendorf, and K.H. Tönshoff, “Ablation and cutting of planar silicon devices using femtosecond laser pulses,” Appl. Phys. A 77, 237 (2003)

Pedraza, J.

J. Pedraza, J. D. Fowlkes, and Y. F. Guan, “Surface nanostructuring of silicon,” Appl. Phys. A 77, 277 (2003)

J. Pedraza, J. D. Fowlkes, and D. H. Lowndes, “Self-organized silicon microcolumn arrays generated by pulsed laser irradiation,” Appl. Phys. A 69, 731 (1999)
[Crossref]

Perrie, W.

S. Ameer-Beg, W. Perrie, S. Rathbone, J. Wright, W. Weaver, and H. Champoux, “Femtosecond laser microstructuring of materials,” Appl. Surf. Sci. 127–129, 875 (1999)

Preston, J. S.

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. Van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B 27, 1141 (1983)
[Crossref]

J. F. Young, J. S. Preston, H. M. van Driel, and J. E. Sipe, “Laser-induced periodic surface structure. II. Experiments on Ge, Si, Al, and brass,” Phys. Rev. B 27, 1155 (1983)
[Crossref]

Rathbone, S.

S. Ameer-Beg, W. Perrie, S. Rathbone, J. Wright, W. Weaver, and H. Champoux, “Femtosecond laser microstructuring of materials,” Appl. Surf. Sci. 127–129, 875 (1999)

Rudolph, P.

W. Kautek, P. Rudolph, G. Daminelli, and J. Krüger, “Physico-chemical aspects of femtosecond-pulse-laser-induced surface nanostructure”, Appl. Phys. A. 81, 65 (2005)
[Crossref]

Schaffer, C. B.

Schreiner, M.

A. Cavalleri, K. Sokolowski-Tinten, J. Bialkowski, M. Schreiner, and D. Von der Linde, “Femtosecond melting and ablation of semiconductors studied with time of flight mass spectroscopy,” J. Appl. Phys. 85, 3301 (1999)
[Crossref]

Shen, M. Y.

M. Y. Shen, C. H. Crouch, J. E. Carey, and E. Mazur. “Femtosecond laser-inducedformation of submicrometer spikes on silicon in water”, Appl. Phys. Lett. 85, 5694 (2004)
[Crossref]

Siegman, A. E.

Z. Guosheng, P. M. Fauchet, and A. E. Siegman, “Growth of spontaneous periodic surface structures on solids during laser illumination,” Phys. Rev. B 26, 5366 (1982)
[Crossref]

P. M. Fauchet and A. E. Siegman, “Surface ripples on silicon and gallium arsenide under picosecond laser illumination,” Appl. Phys. Lett. 40, 824 (1982)
[Crossref]

Sipe, J. E.

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. Van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B 27, 1141 (1983)
[Crossref]

J. F. Young, J. S. Preston, H. M. van Driel, and J. E. Sipe, “Laser-induced periodic surface structure. II. Experiments on Ge, Si, Al, and brass,” Phys. Rev. B 27, 1155 (1983)
[Crossref]

Sokolowski-Tinten, K.

A. Cavalleri, K. Sokolowski-Tinten, J. Bialkowski, M. Schreiner, and D. Von der Linde, “Femtosecond melting and ablation of semiconductors studied with time of flight mass spectroscopy,” J. Appl. Phys. 85, 3301 (1999)
[Crossref]

Tönshoff, K.H.

N. Bärsch, K. Körber, A. Ostendorf, and K.H. Tönshoff, “Ablation and cutting of planar silicon devices using femtosecond laser pulses,” Appl. Phys. A 77, 237 (2003)

Van Driel, H. M.

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. Van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B 27, 1141 (1983)
[Crossref]

J. F. Young, J. S. Preston, H. M. van Driel, and J. E. Sipe, “Laser-induced periodic surface structure. II. Experiments on Ge, Si, Al, and brass,” Phys. Rev. B 27, 1155 (1983)
[Crossref]

Von der Linde, D.

A. Cavalleri, K. Sokolowski-Tinten, J. Bialkowski, M. Schreiner, and D. Von der Linde, “Femtosecond melting and ablation of semiconductors studied with time of flight mass spectroscopy,” J. Appl. Phys. 85, 3301 (1999)
[Crossref]

Warrender, J. M.

C. H. Crouch, J. E. Carey, J. M. Warrender, M. J. Aziz, E. Mazur, and F. Y. Génin, “Comparison of structure and properties of femtosecond and nanosecond laser-structured silicon,” Appl. Phys. Lett. 84, 1850 (2004)
[Crossref]

Weatherly, G. C.

A. Borowiec, M. Mackenzie, G. C. Weatherly, and H. K. Haugen, “Transmission and scanning electron microscopy studies of single femtosecond-laser-pulse ablation of silicon,” Appl. Phys. A 76, 201 (2003)
[Crossref]

Weaver, W.

S. Ameer-Beg, W. Perrie, S. Rathbone, J. Wright, W. Weaver, and H. Champoux, “Femtosecond laser microstructuring of materials,” Appl. Surf. Sci. 127–129, 875 (1999)

Weingärtner, M.

M. Weingärtner, R. Elschner, and O. Bostanjoglo, “Patterning of silicon - Differences between ns and fs laser pulses,” Appl. Surf. Sci. 138–139, 499 (1999)
[Crossref]

Wright, J.

S. Ameer-Beg, W. Perrie, S. Rathbone, J. Wright, W. Weaver, and H. Champoux, “Femtosecond laser microstructuring of materials,” Appl. Surf. Sci. 127–129, 875 (1999)

Wu, C.

T. H. Her, R. J. Finlay, C. Wu, and E. Mazur, “Femtosecond laser-induced formation of spikes on silicon,” Appl. Phys.A 70, 383 (2000)
[Crossref]

Young, J. F.

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. Van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B 27, 1141 (1983)
[Crossref]

J. F. Young, J. S. Preston, H. M. van Driel, and J. E. Sipe, “Laser-induced periodic surface structure. II. Experiments on Ge, Si, Al, and brass,” Phys. Rev. B 27, 1155 (1983)
[Crossref]

Appl. Phys. A (4)

J. Pedraza, J. D. Fowlkes, and D. H. Lowndes, “Self-organized silicon microcolumn arrays generated by pulsed laser irradiation,” Appl. Phys. A 69, 731 (1999)
[Crossref]

J. Pedraza, J. D. Fowlkes, and Y. F. Guan, “Surface nanostructuring of silicon,” Appl. Phys. A 77, 277 (2003)

N. Bärsch, K. Körber, A. Ostendorf, and K.H. Tönshoff, “Ablation and cutting of planar silicon devices using femtosecond laser pulses,” Appl. Phys. A 77, 237 (2003)

A. Borowiec, M. Mackenzie, G. C. Weatherly, and H. K. Haugen, “Transmission and scanning electron microscopy studies of single femtosecond-laser-pulse ablation of silicon,” Appl. Phys. A 76, 201 (2003)
[Crossref]

Appl. Phys. A. (1)

W. Kautek, P. Rudolph, G. Daminelli, and J. Krüger, “Physico-chemical aspects of femtosecond-pulse-laser-induced surface nanostructure”, Appl. Phys. A. 81, 65 (2005)
[Crossref]

Appl. Phys. Lett. (3)

M. Y. Shen, C. H. Crouch, J. E. Carey, and E. Mazur. “Femtosecond laser-inducedformation of submicrometer spikes on silicon in water”, Appl. Phys. Lett. 85, 5694 (2004)
[Crossref]

P. M. Fauchet and A. E. Siegman, “Surface ripples on silicon and gallium arsenide under picosecond laser illumination,” Appl. Phys. Lett. 40, 824 (1982)
[Crossref]

C. H. Crouch, J. E. Carey, J. M. Warrender, M. J. Aziz, E. Mazur, and F. Y. Génin, “Comparison of structure and properties of femtosecond and nanosecond laser-structured silicon,” Appl. Phys. Lett. 84, 1850 (2004)
[Crossref]

Appl. Phys.A (1)

T. H. Her, R. J. Finlay, C. Wu, and E. Mazur, “Femtosecond laser-induced formation of spikes on silicon,” Appl. Phys.A 70, 383 (2000)
[Crossref]

Appl. Surf. Sci. (2)

S. Ameer-Beg, W. Perrie, S. Rathbone, J. Wright, W. Weaver, and H. Champoux, “Femtosecond laser microstructuring of materials,” Appl. Surf. Sci. 127–129, 875 (1999)

M. Weingärtner, R. Elschner, and O. Bostanjoglo, “Patterning of silicon - Differences between ns and fs laser pulses,” Appl. Surf. Sci. 138–139, 499 (1999)
[Crossref]

J. Appl. Phys. (1)

A. Cavalleri, K. Sokolowski-Tinten, J. Bialkowski, M. Schreiner, and D. Von der Linde, “Femtosecond melting and ablation of semiconductors studied with time of flight mass spectroscopy,” J. Appl. Phys. 85, 3301 (1999)
[Crossref]

Opt. Lett. (1)

Phys. Rev. B (3)

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. Van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B 27, 1141 (1983)
[Crossref]

Z. Guosheng, P. M. Fauchet, and A. E. Siegman, “Growth of spontaneous periodic surface structures on solids during laser illumination,” Phys. Rev. B 26, 5366 (1982)
[Crossref]

J. F. Young, J. S. Preston, H. M. van Driel, and J. E. Sipe, “Laser-induced periodic surface structure. II. Experiments on Ge, Si, Al, and brass,” Phys. Rev. B 27, 1155 (1983)
[Crossref]

Thin Solid Films (1)

G. Daminelli, J. Krüger, and W. Kautek, “Femtosecond laser interaction with silicon under water confinement”, Thin Solid Films 467, 334 (2004)
[Crossref]

Other (1)

D. Bäuerle, Laser Processing and Chemistry (Springer-Verlag, Berlin, Heidelberg, New York2000)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig.1.
Fig.1.

Schematic diagram of experimental setup

Fig. 2.
Fig. 2.

SEM images of the periodic structures formed in air after laser irradiation (10 kHz, 1μJ/pulse, 350 fs, 1040 nm); use of a 20x focusing objective (NA: 0.5)

Fig. 3.
Fig. 3.

SEM images of the periodic structures formed in oil confinement after laser irradiation (90 MHz, 3.5 nJ/pulse, 350 fs, 170 fs, 800 nm); use of a 40x oil focusing objective (NA: 1.3)

Fig. 4.
Fig. 4.

SEM images of a nanostructured 2D array created after multi scans laser irradiation in oil confinement with periodic nanochannels of sub-100 nm. (90 MHz, 3.5 nJ/pulse, 350 fs, 170 fs, 800 nm, 40x oil focusing objective, NA: 1.3).

Metrics