Abstract

A novel surface plasmon waveguide structure is proposed for highly integrated planar lightwave circuits. By etching a small trench through a metallic thin film on a silica substrate, a guided mode with highly confined light fields is realized. The mode properties of the proposed structure are studied. The necessity of using a polymer upper-cladding is discussed. The coupling between two closely positioned waveguides and a 90° bending are also studied numerically. Sharp bending and high integration can be realized with the present surface plasmon waveguide. The proposed structure is easy to fabricate as compared with some other types of surface plasmon waveguides for high integration.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, �??Microphotonics Devices Based on Silicon Microfabrication Technology,�?? IEEE J. Sel. Top. Quantum Electron 11, 232-240 (2005).
    [CrossRef]
  2. V. R. Almeida, Q. Xu, C. A. Barrios, R. R. Panepucci, and M. Lipson, �??Guiding and confining light in void nanostructure,�?? Opt. Lett. 29, 1209-1211 (2004).
    [CrossRef] [PubMed]
  3. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals (Princeton University Press, 1995).
  4. H. Raether, Surface Plasmons (Springer, Berlin, 1988).
  5. T. Goto, Y. Katagiri, H. Fukuda, and H. Shinojima, Y. Nakano, I. Kobayashi, and Y. Mitsuoka, �??Propagation loss measurement for surface plasmon-polariton modes at metal waveguides on semiconductor substrates,�?? Appl. Phys. Lett. 84, 852-854 (2004).
    [CrossRef]
  6. R. Charbonneau, N. Lahoud, G. Mattiussi, and P. Berini, �??Demonstration of integrated optics elements based on long-ranging surface plasmon polaritons,�?? Opt. Express 13, 977-984 (2005), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-3-977">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-3-977</a>
    [CrossRef] [PubMed]
  7. R. Zia, M. D. Selker, P. B. Catrysse, and M. L. Brongersma, �??Geometries and materials for subwavelength surface plasmon modes,�?? J. Opt. Soc. Am. A 21, 2442-2446 (2004).
    [CrossRef]
  8. D. M. Pozar, Microwave Engineering (2nd ed. John Wiley and Sons, 1998).
  9. F. Kusunoki, T. Yotsuya, J. Takahara, and T. Kobayashi, �??Propagation properties of guided waves in index-guided two-dimensional optical waveguides,�?? Appl. Phys. Lett. 86, 211101 (2005).
    [CrossRef]
  10. K. Tanaka, and M. Tanaka, �??Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide,�?? Appl. Phys. Lett. 82, 1158-1160 (2003).
    [CrossRef]
  11. K. Tanaka, M. Tanaka, and T. Sugiyama, �??Simulation of practical nanometric optical circuits based on surface plasmon polariton gap waveguides,�?? Opt. Express 13, 256-266 (2005), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-1-256">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-1-256</a>
    [CrossRef] [PubMed]
  12. W. C. Tan, T. W. Preist, J. R. Sambles, and N. P. Wanstall, �??Flat surface-plasmon-polariton bands and resonant optical absorption on short-pitch metal gratings,�?? Phys. Rev. B 59, 12661-12666 (1999).
    [CrossRef]
  13. I. V. Novikov, and A. A. Maradudin, �??Channel polaritons,�?? Phys. Rev. B 66, 035403 (2002).
    [CrossRef]
  14. D. F. P. Pile and D. K. Gramotnev, �??Channel plasmon-polariton in a triangular groove on a metal surface,�?? Opt. Lett. 29, 1069-1071 (2004).
    [CrossRef] [PubMed]
  15. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, �??Channel Plasmon-Polariton Guiding by Subwavelength Metal Grooves,�?? Phys. Rev. Lett. 95, 046802 (2005)
    [CrossRef] [PubMed]
  16. N. N. Feng, G. R. Zhou, and W. P. Huang, �??Computation of full-vector modes for bending waveguide using cylindrical perfectly matched layers,�?? J. Lightwave Technol. 20, 1976-1980 (2002).
    [CrossRef]
  17. A. Taflove, Advances in Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Norwood, Mass., 1998).
  18. E. D. Palik, Handbook of Optical Constants of Solids (Academic, New York, 1985).

Appl. Phys. Lett.

T. Goto, Y. Katagiri, H. Fukuda, and H. Shinojima, Y. Nakano, I. Kobayashi, and Y. Mitsuoka, �??Propagation loss measurement for surface plasmon-polariton modes at metal waveguides on semiconductor substrates,�?? Appl. Phys. Lett. 84, 852-854 (2004).
[CrossRef]

F. Kusunoki, T. Yotsuya, J. Takahara, and T. Kobayashi, �??Propagation properties of guided waves in index-guided two-dimensional optical waveguides,�?? Appl. Phys. Lett. 86, 211101 (2005).
[CrossRef]

K. Tanaka, and M. Tanaka, �??Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide,�?? Appl. Phys. Lett. 82, 1158-1160 (2003).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, �??Microphotonics Devices Based on Silicon Microfabrication Technology,�?? IEEE J. Sel. Top. Quantum Electron 11, 232-240 (2005).
[CrossRef]

J. Lightwave Technol.

J. Opt. Soc. Am. A

Opt. Express

Opt. Lett.

Phys. Rev. B

W. C. Tan, T. W. Preist, J. R. Sambles, and N. P. Wanstall, �??Flat surface-plasmon-polariton bands and resonant optical absorption on short-pitch metal gratings,�?? Phys. Rev. B 59, 12661-12666 (1999).
[CrossRef]

I. V. Novikov, and A. A. Maradudin, �??Channel polaritons,�?? Phys. Rev. B 66, 035403 (2002).
[CrossRef]

Phys. Rev. Lett.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, �??Channel Plasmon-Polariton Guiding by Subwavelength Metal Grooves,�?? Phys. Rev. Lett. 95, 046802 (2005)
[CrossRef] [PubMed]

Other

A. Taflove, Advances in Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Norwood, Mass., 1998).

E. D. Palik, Handbook of Optical Constants of Solids (Academic, New York, 1985).

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals (Princeton University Press, 1995).

H. Raether, Surface Plasmons (Springer, Berlin, 1988).

D. M. Pozar, Microwave Engineering (2nd ed. John Wiley and Sons, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(a) Schematic diagram (cross-sectional x-y plane) and (b) a fabricated structure (x-z plane view) of the proposed SP waveguide. Amplitude distributions of the fundamental mode when (c) w=50nm, h=200nm and (d) w=50nm, h=60nm. The dotted lines in (c) and (d) indicate the boundary of different materials.

Fig. 2.
Fig. 2.

Real part βr of the propagation constant for different modes when w=50nm. The insets show some typical mode profiles of Ex for the corresponding modes. The dot-dashed line indicates the real part βsp of the propagation constant for the SP wave supported by the metal film without the trench.

Fig. 3.
Fig. 3.

Dependence of the mode properties on the structural parameters in the proposed SP waveguide. The two black solid lines indicate the boundaries of different regions. The colored curves give the contours of the propagation length (indicated with numbers) for the fundamental mode.

Fig. 4.
Fig. 4.

Real part βr of the propagation constant for the fundamental mode as the refractive index of the cladding decreases when h=400nm. The dot-dashed line indicates the real part βsp of the propagation constant for the SP wave supported by the metal film without the trench.

Fig. 5.
Fig. 5.

(a) Two closely positioned SP waveguides. (b) The dependence of the coupling length on separation D when w=50nm and h=200nm. (c) The dependence of the coupling length on the metal film thicknesses h and the trench width w when D=150nm.

Fig. 6.
Fig. 6.

(a) Schematic diagram of a 90° bending (top-viewing x-z plane). The amplitude distribution of Hy field in the x-z plane at the central depth of the metal films when the bending radius (b) r=0nm and (c) r=100nm. (d) The transimissivity, reflectivity and out-of-plane loss as the bending radius r increases. The transimissivity (reflectivity) is evaluated as the power propagating (reflected) through the output (input) facet of the bending section. The out-of-plane loss is evaluated as the power radiated out of the bending plane (the x-z plane). All these powers are normalized by the input power at the input facet of the bending section.

Metrics