Abstract

We present a novel optical sensor concept that merges integrated optics and micro-mechanics in a monolithic substrate. This concept pushes microsystems integration and defines a new class of monolithic optical microsystems where only optical signals are processed. As an illustration, we present a high-precision, monolithic, glass-based, micro-displacement sensor. Our displacement sensor is made out of a single piece of glass through a two-step process based on femtosecond laser illumination followed by chemical etching.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. Y. Bellouard, PhD dissertation (no 2308), Ecole Polytechnique Fédérale de Lausanne, 2000.
  2. K. M. Davis, K. Miura, N. Sugimoto, K. Hirao, �??Writing waveguides in glass with a femtosecond laser,�?? Opt. Lett. 21, 1729-1731 (1996).
    [CrossRef] [PubMed]
  3. A. Marcinkevi�?ius, S. Juodkazis, M. Watanabe, M. Miwa, S. Matsuo, H. Misawa, J. Nishii, �??Femtosecond laser-assisted three-dimensional microfabrication in silica,�?? Opt. Lett. 26, 277-279 (2001).
    [CrossRef]
  4. P. Bado, A. A. Said, M. Dugan, T. Sosnowski, S. Wright, �??Dramatic Improvements in Waveguide Manufacturing with Femtosecond Lasers�?? in NFOEC, Dallas (TX), Sept. 2002.
  5. Y. Bellouard, A. Said, M. Dugan, P. Bado, �??Fabrication of High-Aspect Ratio, Micro-Fluidic Channels and Tunnels using Femtosecond Laser Pulses and Chemical Etching,�?? Opt. Express 12, 2120-2129 (2004), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-10-2120">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-10-2120</a>.
    [CrossRef] [PubMed]
  6. P. Bado, A. Said, M. Dugan, �??Manufacturing of high quality integrated optical components by laser direct-write,�?? in ICALEO, Jacksonville (FL), Oct. 2003.
  7. S. Ungar, Fiber Optics, Theory and Applications, (John Wiley & Sons, NY, ISBN 0 417 92758 9, 1990).
  8. R.V. Jones, Parallel and rectilinear spring movements, J. Sci. Instrum. 28, 38-41 (1951).
    [CrossRef]
  9. S. T. Smith, D.G. Chetwynd, Foundations of Ultraprecision Mechanism Design, ed. Gordon & Breach Publishers.
  10. J.M. Paros, L. Weisborg, Machine Design 27, 151-156 (1965).
  11. S. Henein, �??Conception des guidages flexibles,�?? Press Polytechniques et Universitaires Romandes, 2001.
  12. H. Scholze, Glass: Nature, Structure and Properties, (Springer-Verlag publishers, 1990).

ICALEO 2003 (1)

P. Bado, A. Said, M. Dugan, �??Manufacturing of high quality integrated optical components by laser direct-write,�?? in ICALEO, Jacksonville (FL), Oct. 2003.

J. Sci. Instrum. (1)

R.V. Jones, Parallel and rectilinear spring movements, J. Sci. Instrum. 28, 38-41 (1951).
[CrossRef]

Machine Design (1)

J.M. Paros, L. Weisborg, Machine Design 27, 151-156 (1965).

NFOEC 2002 (1)

P. Bado, A. A. Said, M. Dugan, T. Sosnowski, S. Wright, �??Dramatic Improvements in Waveguide Manufacturing with Femtosecond Lasers�?? in NFOEC, Dallas (TX), Sept. 2002.

Opt. Express (1)

Opt. Lett. (2)

Other (5)

S. T. Smith, D.G. Chetwynd, Foundations of Ultraprecision Mechanism Design, ed. Gordon & Breach Publishers.

S. Ungar, Fiber Optics, Theory and Applications, (John Wiley & Sons, NY, ISBN 0 417 92758 9, 1990).

S. Henein, �??Conception des guidages flexibles,�?? Press Polytechniques et Universitaires Romandes, 2001.

H. Scholze, Glass: Nature, Structure and Properties, (Springer-Verlag publishers, 1990).

Y. Bellouard, PhD dissertation (no 2308), Ecole Polytechnique Fédérale de Lausanne, 2000.

Supplementary Material (11)

» Media 1: MOV (857 KB)     
» Media 2: MOV (335 KB)     
» Media 3: MOV (333 KB)     
» Media 4: MOV (331 KB)     
» Media 5: MOV (342 KB)     
» Media 6: MOV (337 KB)     
» Media 7: MOV (341 KB)     
» Media 8: MOV (341 KB)     
» Media 9: MOV (333 KB)     
» Media 10: MOV (500 KB)     
» Media 11: MOV (748 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Computer Assisted Drawing view of the full sensing device.

Fig. 2.
Fig. 2.

A micro-hinge (left) and a cylinder (right) manufactured using the hybrid femtosecond / chemical etching process.

Fig. 3.
Fig. 3.

Left: “Waveguides-based linear encoders principles”- Right: Losses due to radial offset between two waveguides with 10-microns core diameter.

Fig. 4.
Fig. 4.

Sensor kinematics: the circle represents ideal mechanical joints with one degree of freedom (rotation in the plane). Figure a) is a parallelogram four-bars mechanism, b) represents a single compound design and c) a double-compound design

Fig. 5.
Fig. 5.

Wave propagation in the ILE for various configurations as the array is moved from the right to the left. The horizontal line indicates the free space gaps (Movie: 858kb).

Fig. 6.
Fig. 6.

FEM analysis – Stress distribution in four hinges (left) and displacement distribution of the entire structure (right).

Fig. 7.
Fig. 7.

Flexure vibration mode analysis. [Media 2] [Media 3] [Media 4] [Media 5] [Media 6] [Media 7] [Media 8] [Media 9]

Fig. 8.
Fig. 8.

Experimental setup: (left) Partial view and (right) sketch.

Fig. 9.
Fig. 9.

(left) Sensor prototype: optical microscope view (movie: 500kb) / (middle) close-view of the ILE. The scale bar is 30 μm. / (right) waveguide turns on and off (movie: 748kb)

Fig. 10.
Fig. 10.

Experimental results (upper curve) compared with simulation results (lower curve). The figure shows the intensity seen for the last three waveguides (going from left to right). The lowest intensity peaks (on the right) corresponds to the last waveguide.

Tables (1)

Tables Icon

Table 1. Main design parameters

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

L lat = 10 log { 2 π [ cos 1 ( δ D ) δ D 1 ( δ D ) 2 ] }
K x 8 Eb t 2.5 9 π l 2 r
α M 3 π α L r 4 E t
Δ y = 3 π L σ L r 2 E t

Metrics