Abstract

We report controlled hole expansion in photonic crystal fibres (PCFs) by heating the fibre while the holes were pressurised. This was done by post-processing an existing fibre, not during fibre fabrication. Small holes in an endlessly single-mode (ESM) PCF were inflated to become large holes. The large-hole PCF was then tapered to produce a “cobweb” PCF with a small highly-nonlinear core, interfaced to the ESM PCF at both ends by gradual transitions. The loss was less than 0.4 dB in the complete structure, which was used to demonstrate supercontinuum generation when pumped with a fs Ti:sapphire laser.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. T. A. Birks and Y. W. Li, "The shape of fiber tapers," IEEE J. Lightwave Technol. 10, 432-438 (1992).
    [CrossRef]
  2. S.G. Leon-Saval, T.A. Birks, W.J. Wadsworth, P.St.J. Russell and M.W. Mason, �??Supercontinuum generation in submicron fibre waveguides,�?? Opt. Express, 12 (13), 2864-2869 (2004). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-13-2864">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-13-2864</a>
    [CrossRef] [PubMed]
  3. T. A. Birks, G. Kakarantzas and P. St.J. Russell, "All-fibre devices based on tapered fibres," presented at Opt. Fiber Commun. Conf. paper ThK2 (2004).
  4. C. M. B. Cordeiro, W. J. Wadsworth, T. A. Birks and P. St.J. Russell, "Octave supercontinuum generated in tapered conventional fibres by a nanosecond 1064 nm laser," presented at Conf. Lasers Electro-Opt. (2004), paper CThC2.
  5. J.C. Knight, T.A. Birks, P.St.J. Russell, and D.M. Atkin, �??All-silica single-mode fiber with photonic crystal cladding,�?? Opt. Lett. 21, 1547-1549 (1996); Errata, Opt. Lett. 22, 484-485 (1997).
    [CrossRef] [PubMed]
  6. G. Kakarantzas, T.A. Birks, P.St.J. Russell, �??Structural long-period gratings in photonic crystal fibers,�?? Opt. Lett. 27 (12), 1013-1015 (2002).
    [CrossRef]
  7. H.C. Nguyen, B.T. Kuhlmey, M.J. Steel, C.L. Smith, E.C. Magi, R.C. McPhedran, B.J. Eggleton, �??Leakage of the fundamental mode in photonic crystal fiber tapers,�?? Opt. Lett. 30 (10), 1123-1125 (2005).
    [CrossRef] [PubMed]
  8. T.A. Birks, G. Kakarantzas, P.St.J. Russell and D.F.Murphy, �??Photonic crystal fibre devices,�?? Proc SPIE, 4943, 142-151 (2002).
    [CrossRef]
  9. E. C. Magi, P. Steinvurzel, B. J. Eggleton "Tapered photonic crystal fibers" Opt. Express 12, 776-784 (2004). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-5-776">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-5-776</a>
    [CrossRef] [PubMed]
  10. D. Tabor �??Gases, Liquids and Solids,�?? Penguin Books, Harmondsworth UK, (1969).
  11. W.D. Kingery �??Surface tension of some liquid oxides and their temperature coefficients,�?? J. Am. Ceramic Soc. 42 (1), 6-10 (1959).
    [CrossRef]
  12. J.D. Love, �??Spot size, adiabaticity and diffraction in tapered fibres,�?? Electron. Lett. 23, 993-994 (1987).
    [CrossRef]
  13. T.A. Birks, J.C. Knight, and P.St.J. Russell, �??Endlessly single-mode photonic crystal fibre,�?? Opt. Lett. 22, 961-963 (1997).
    [CrossRef] [PubMed]
  14. T. A. Birks, D. Mogilevtsev, J. C. Knight, P. St.J. Russell, J. Broeng, P. J. Roberts, J. A. West, D. C. Allen, J. C. Fajardo "The analogy between photonic crystal fibres and step index fibres" Proc. Opt. Fiber Commun. Conf. (OFC '99, San Diego, California) paper FG4 (1999).
  15. W. A. Gambling, H. Matsumura "Simple characterisation factor for practical single-mode fibres" Electron. Lett. 13, 691-693 (1977).
    [CrossRef]
  16. W.J. Wadsworth, A. Ortigosa-Blanch, J.C. Knight, T.A. Birks, T-P.M. Man and P.St.J. Russell, �??Supercontinuum generation in photonic crystal fibres and optical fibre tapers: A novel light source,�?? J. Opt. Soc. Am. B 19, 2148-2155 (2002).
    [CrossRef]
  17. J. K. Ranka, R. S. Windeler and A. J. Stentz, "Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm," Opt. Lett. 25, 25-27 (2000).
    [CrossRef]
  18. T. A. Birks, W. J. Wadsworth and P. St.J. Russell, "Supercontinuum generation in tapered fibers," Opt. Lett. 25, 1415-1417 (2000).
    [CrossRef]
  19. S. Coen, A. Chau, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth and P. St.J. Russell, "White-light supercontinuum generation with 60-ps pump pulses in a photonic crystal fiber," Opt. Lett. 26, 1356-1358 (2001).
    [CrossRef]
  20. J.K. Chandalia, B.J. Eggleton, R.S. Windeler, S.G. Kosinski, X. Liu, C. Xu �??Adiabatic coupling in tapered air-silica microstructured optical fiber,�?? IEEE Photonics Technol. Lett. 13 (1), 52-54, (2001)
    [CrossRef]

Conf. Lasers Electro-Opt.

C. M. B. Cordeiro, W. J. Wadsworth, T. A. Birks and P. St.J. Russell, "Octave supercontinuum generated in tapered conventional fibres by a nanosecond 1064 nm laser," presented at Conf. Lasers Electro-Opt. (2004), paper CThC2.

Electron. Lett.

W. A. Gambling, H. Matsumura "Simple characterisation factor for practical single-mode fibres" Electron. Lett. 13, 691-693 (1977).
[CrossRef]

J.D. Love, �??Spot size, adiabaticity and diffraction in tapered fibres,�?? Electron. Lett. 23, 993-994 (1987).
[CrossRef]

IEEE J. Lightwave Technol.

T. A. Birks and Y. W. Li, "The shape of fiber tapers," IEEE J. Lightwave Technol. 10, 432-438 (1992).
[CrossRef]

IEEE Photonics Technol. Lett.

J.K. Chandalia, B.J. Eggleton, R.S. Windeler, S.G. Kosinski, X. Liu, C. Xu �??Adiabatic coupling in tapered air-silica microstructured optical fiber,�?? IEEE Photonics Technol. Lett. 13 (1), 52-54, (2001)
[CrossRef]

J. Am. Ceramic Soc.

W.D. Kingery �??Surface tension of some liquid oxides and their temperature coefficients,�?? J. Am. Ceramic Soc. 42 (1), 6-10 (1959).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Express

Opt. Fiber Commun. Conf.

T. A. Birks, G. Kakarantzas and P. St.J. Russell, "All-fibre devices based on tapered fibres," presented at Opt. Fiber Commun. Conf. paper ThK2 (2004).

Opt. Lett.

Proc SPIE

T.A. Birks, G. Kakarantzas, P.St.J. Russell and D.F.Murphy, �??Photonic crystal fibre devices,�?? Proc SPIE, 4943, 142-151 (2002).
[CrossRef]

Proc. Opt. Fiber Commun. Conf.

T. A. Birks, D. Mogilevtsev, J. C. Knight, P. St.J. Russell, J. Broeng, P. J. Roberts, J. A. West, D. C. Allen, J. C. Fajardo "The analogy between photonic crystal fibres and step index fibres" Proc. Opt. Fiber Commun. Conf. (OFC '99, San Diego, California) paper FG4 (1999).

Other

D. Tabor �??Gases, Liquids and Solids,�?? Penguin Books, Harmondsworth UK, (1969).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Calculated MFD at a wavelength of 1 μm for PCFs with a 5 μm diameter solid core and varying d/Λ.

Fig. 2.
Fig. 2.

Fibre inflation and tapering process to produce a 2-μm-core PCF with large air holes, connected at both ends to 5-μm-core PCF pigtails with small air holes. The example SEMs on the right are to the same scale.

Fig. 3.
Fig. 3.

SEMs of (a) the original 5-μ m-core ESM PCF and (b)-(d) the same PCF inflated at pressures of 6, 8 and 10 bar respectively. All images in each row are at the same scale.

Fig. 4.
Fig. 4.

SEMs of the 12-μm-core PCF. The inflated fibre has 210 μm OD.

Fig. 5.
Fig. 5.

SEM images of the inflated and tapered fibres. Top: initial PCF; Middle: inflated PCF; Bottom: tapered inflated PCF. All pictures to the same scale. Left to right; Final taper core diameters 1.1, 1.6 and 1.9 μm respectively.

Fig. 6.
Fig. 6.

Supercontinuum spectra for inflated fibres. Orange and red curves, tapered core diameter of 1.6 μm and coupled power of 123 and 92 mW respectively; blue and green curves, tapered core diameter of 1.9 μm and coupled power of 130 and 103 mW respectively

Tables (2)

Tables Icon

Table 1. Dimensions of the inflated PCFs shown in Fig. 3. The scaled fibre values are obtained by multiplying the initial fibre values by the same factor of 0.92, to represent the effect of the slight tapering if the holes did not deform.

Tables Icon

Table 2. Parameters for the inflated and tapered fibres shown in Fig. 5

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

P st = 2 γ d ,
P st ( bar ) = 6 d ( μm ) ,
d core = 2 Λ d = Λ ( 2 d Λ ) .
MFD 2 = 4 × 0 r 2 I d A 0 I d A ,

Metrics