Abstract

We report measurements of frequency degenerate and nondegenerate two-photon absorption (2PA) spectra of CdTe quantum dots, QDs, in glass matrices and compare them with 2PA in bulk CdTe. We find that the 2PA is strongly dependent on the size of the QDs becoming smaller with decreasing size, even when normalizing to the volume of the dots. We adapt a simple degenerate 2PA model, based on the effective mass approximation, to nondegenerate 2PA, and this model correctly describes the experimental data for 2-photon energies up to ~ 1.4Eg. This suggests that, once the spectrum for one size of quantum dot is known, the model can be used for predicting the degenerate and nondegenerate 2PA spectra of different sized QDs of the same semiconductor.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. A. L. Efros and A. L. Efros, �??Interband absorption of light in a semiconductor sphere,�?? Sov. Semicond. 16, 772-775 (1982).
  2. L. A. Padilha, A. A. R. Neves, C.L. Cesar, L. C. Barbosa, and C. H. B. Cruz, �??Recombination processes in CdTe quantum-dot-doped glasses,�?? Appl. Phys. Lett. 85, 3256-3258 (2004).
    [CrossRef]
  3. G. P. Banfi, V. Degiorgio, and D. Ricard, �??Nonlinear optical properties of semiconductor nanocrystals,�?? Adv. Phys. 47, 447-510 (1998).
    [CrossRef]
  4. I. Gerdova and A Hache, �??Third-order non-linear spectroscopy of CdSe and CdSe/ZnS core shell quantum dots,�?? Opt. Commun. 246, 205-212 (2005).
    [CrossRef]
  5. D. Cotter, M. G. Burt, R. J. Manning, �??Below-band-gap third-order optical nonlinearity of nanometer-size semiconductor crystallites,�?? Phys. Rev. Lett. 68, 1200-1203 (1992).
    [CrossRef] [PubMed]
  6. J. T. Seo, Q. Yang, S. Creekmore, D. Temple, L. Qu, W. Yu, A. Wang, X. Peng, A. Mott, M. Namkung, S. S. Jung, J. H. Kim, �??Evaluation of nonlinear optical properties of cadmium chalcogenide nanomaterials,�?? Phys. E 17, 101-103 (2003).
    [CrossRef]
  7. A. S. Duarte, H. L. Fragnito, and E. Palange, �??Light induced permanent modifications of the nonlinear optical properties of semiconductor doped glasses,�?? Solid State Commun. 100, 463-466 (1996).
    [CrossRef]
  8. M. Sheik-Bahae, D.C. Hutchings, D. J. Hagan, and E. W. Van Stryland, �??Dispersion of bound electron nonlinear refraction in solids,�?? IEEE J. Quantum Electron. 27, 1296-1309 (1991).
    [CrossRef]
  9. K. I. Kang, B. P. McGinnis, Sandalphon, Y. Z. Hu, S. W. Koch, N. Peyghambarian, A. Mysyrowicz, L. C. Liu, and H. Risbud, �??Confinement-induced valence-band mixing in CdS quantum dots observed by two-photon spectroscopy,�?? Phys. Rev. B 45, 3465-3468 (1992).
    [CrossRef]
  10. A. V. Fedorov, A. V. Baranv, and K. Inoue, �??Two-photon transitions in systems with semiconductor quantum dots,�?? Phys. Rev. B 54, 8627-8632 (1996).
    [CrossRef]
  11. D.C. Hutchings and E. W. Van Stryland, �??Nondegenerate two-photon absorption in zinc blende semiconductors,�?? J. Opt. Soc. Am. B 9, 2065-2074 (1992).
    [CrossRef]
  12. L.C. Barbosa, V.C.S. Reynoso, A.M. de Paula, C.R.M. de Oliveira, O.L. Alves, A.F. Craievich, R.E. Marotti, C.H. Brito-Cruz, and C.L. Cesar, �??CdTe quantum dots by melt heat treatment in borosilicate glasses,�?? J. Non-Cryst. Solids 219, 205-211 (1997).
    [CrossRef]
  13. N.F. Borrelli, D.W. Hall, H.J. Holland, and D.W. Smith, �??Quantum confinement effects of semiconducting microscrystallites in glass,�?? J. Appl. Phys. 61, 5399-5409 (1987).
    [CrossRef]
  14. J. A. Medeiros Neto, L. C. Barbosa, C. L. Cesar, O. L. Alves, and F. Galembeck, "Quantum size effects on CdTexS1-x semiconductor doped glass," Appl. Phys. Lett. 59, 2715-2717 (1991).
    [CrossRef]
  15. M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, �??Sensitive measurement of optical nonlinearities using a single beam,�?? IEEE J. Quantum Electron. 26, 760-769 (1990).
    [CrossRef]
  16. R. A. Negres, J. M. Hales, A. Kobyakov, D. J. Hagan, and E. W. Van Stryland, �??Experiment and analysis of two-photon absorption spectroscopy using a white-light continuum probe,�?? IEEE J. Quantum Electron. 38, 1205-1216 (2002).
    [CrossRef]
  17. P.C. Sercel and K.J. Vahala, �??Analytical formalism for determining quantum-wire and quantum-dot bandstructure in the multiband envelop-function approximation,�?? Phys. Rev. B 42, 3690-3710 (1990).
    [CrossRef]
  18. C. R. M. de Oliveira, A. M. de Paula, F. O. Plentz Filho, J. A. Medeiros Neto, L. C. Barbosa, O. L. Alves, E. A. Menezes, J. M. M. Rios, H. L. Fragnito, C. H. B. Cruz, and C. L. Cesar, �??Probing of the quantum dot size distribution in CdTe-doped-glasses by photoluminescence excitation spectroscopy,�?? Appl. Phys. Lett. 66, 439-441 (1995).
    [CrossRef]
  19. E. W. Van Stryland, M. A. Woodall, H. Vanherzeele, and M. J. Soileau, �??Energy band-gap dependence of 2-photon absorption,�?? Opt. Lett. 10, 490-492 (1985).
    [CrossRef] [PubMed]

Adv. Phys. (1)

G. P. Banfi, V. Degiorgio, and D. Ricard, �??Nonlinear optical properties of semiconductor nanocrystals,�?? Adv. Phys. 47, 447-510 (1998).
[CrossRef]

Appl. Phys. Lett. (3)

L. A. Padilha, A. A. R. Neves, C.L. Cesar, L. C. Barbosa, and C. H. B. Cruz, �??Recombination processes in CdTe quantum-dot-doped glasses,�?? Appl. Phys. Lett. 85, 3256-3258 (2004).
[CrossRef]

J. A. Medeiros Neto, L. C. Barbosa, C. L. Cesar, O. L. Alves, and F. Galembeck, "Quantum size effects on CdTexS1-x semiconductor doped glass," Appl. Phys. Lett. 59, 2715-2717 (1991).
[CrossRef]

C. R. M. de Oliveira, A. M. de Paula, F. O. Plentz Filho, J. A. Medeiros Neto, L. C. Barbosa, O. L. Alves, E. A. Menezes, J. M. M. Rios, H. L. Fragnito, C. H. B. Cruz, and C. L. Cesar, �??Probing of the quantum dot size distribution in CdTe-doped-glasses by photoluminescence excitation spectroscopy,�?? Appl. Phys. Lett. 66, 439-441 (1995).
[CrossRef]

IEEE J. Quantum Electron. (3)

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, �??Sensitive measurement of optical nonlinearities using a single beam,�?? IEEE J. Quantum Electron. 26, 760-769 (1990).
[CrossRef]

R. A. Negres, J. M. Hales, A. Kobyakov, D. J. Hagan, and E. W. Van Stryland, �??Experiment and analysis of two-photon absorption spectroscopy using a white-light continuum probe,�?? IEEE J. Quantum Electron. 38, 1205-1216 (2002).
[CrossRef]

M. Sheik-Bahae, D.C. Hutchings, D. J. Hagan, and E. W. Van Stryland, �??Dispersion of bound electron nonlinear refraction in solids,�?? IEEE J. Quantum Electron. 27, 1296-1309 (1991).
[CrossRef]

J. Appl. Phys. (1)

N.F. Borrelli, D.W. Hall, H.J. Holland, and D.W. Smith, �??Quantum confinement effects of semiconducting microscrystallites in glass,�?? J. Appl. Phys. 61, 5399-5409 (1987).
[CrossRef]

J. Non-Cryst. Solids (1)

L.C. Barbosa, V.C.S. Reynoso, A.M. de Paula, C.R.M. de Oliveira, O.L. Alves, A.F. Craievich, R.E. Marotti, C.H. Brito-Cruz, and C.L. Cesar, �??CdTe quantum dots by melt heat treatment in borosilicate glasses,�?? J. Non-Cryst. Solids 219, 205-211 (1997).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

I. Gerdova and A Hache, �??Third-order non-linear spectroscopy of CdSe and CdSe/ZnS core shell quantum dots,�?? Opt. Commun. 246, 205-212 (2005).
[CrossRef]

Opt. Lett. (1)

Phys. E (1)

J. T. Seo, Q. Yang, S. Creekmore, D. Temple, L. Qu, W. Yu, A. Wang, X. Peng, A. Mott, M. Namkung, S. S. Jung, J. H. Kim, �??Evaluation of nonlinear optical properties of cadmium chalcogenide nanomaterials,�?? Phys. E 17, 101-103 (2003).
[CrossRef]

Phys. Rev. B (3)

K. I. Kang, B. P. McGinnis, Sandalphon, Y. Z. Hu, S. W. Koch, N. Peyghambarian, A. Mysyrowicz, L. C. Liu, and H. Risbud, �??Confinement-induced valence-band mixing in CdS quantum dots observed by two-photon spectroscopy,�?? Phys. Rev. B 45, 3465-3468 (1992).
[CrossRef]

A. V. Fedorov, A. V. Baranv, and K. Inoue, �??Two-photon transitions in systems with semiconductor quantum dots,�?? Phys. Rev. B 54, 8627-8632 (1996).
[CrossRef]

P.C. Sercel and K.J. Vahala, �??Analytical formalism for determining quantum-wire and quantum-dot bandstructure in the multiband envelop-function approximation,�?? Phys. Rev. B 42, 3690-3710 (1990).
[CrossRef]

Phys. Rev. Lett. (1)

D. Cotter, M. G. Burt, R. J. Manning, �??Below-band-gap third-order optical nonlinearity of nanometer-size semiconductor crystallites,�?? Phys. Rev. Lett. 68, 1200-1203 (1992).
[CrossRef] [PubMed]

Solid State Commun. (1)

A. S. Duarte, H. L. Fragnito, and E. Palange, �??Light induced permanent modifications of the nonlinear optical properties of semiconductor doped glasses,�?? Solid State Commun. 100, 463-466 (1996).
[CrossRef]

Sov. Semicond. (1)

A. L. Efros and A. L. Efros, �??Interband absorption of light in a semiconductor sphere,�?? Sov. Semicond. 16, 772-775 (1982).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Linear absorption spectra for CdTe-600 and CdTe-570. The linear absorption for CdTe-750 is shown in the inset.

Fig. 2.
Fig. 2.

Degenerate and nondegenerate 2PA spectra for CdTe-750 for three different pump photon energies. For the degenerate Z-scan data ω1 = ω2. The lines following the experimental data are calculated from theory, and the dotted line is the theory for degenerate 2PA in bulk CdTe.

Fig. 3.
Fig. 3.

Degenerate and nondegenerate 2PA spectra for CdTe-600 for three different pump photon energies. For the degenerate Z-scan data ω1 = ω2. The lines following the experimental data are calculated from theory.

Fig. 4.
Fig. 4.

Comparison of the nondegenerate 2PA spectra for the three different samples normalized by the fill fraction of each sample and by the Maxwell-Garnet local field correction

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

W nd ( 2 ) = 2 π ħ i , f M f , i nd 2 δ ( E f E i ħ ω 2 ħ ω 1 ) ,
M f , i nd = a H 2 f , a H 1 a , i E a E i ħ ω 1 i ħ γ + H 1 f , a H 2 a , i E a E i ħ ω 2 i ħ γ ,
β ND = N ρ x 1 x 2 2 ( k 2 E g 5 F ND ( 2 ) + Q 2 E g 3 Φ ND ( 2 ) ) ,
Φ ND ( 2 ) = j = 1 3 i ( 2 l i + 1 ) δ ( E i c E i h j ħ ω 1 ħ ω 2 ) ,
F ND ( 2 ) = 1 R 2 j = 1 3 i , f T i , f c . h j ND ( l f δ l f , l i + 1 + l i δ l f , l i 1 ) ξ f 2 ξ i 2 ( ξ f 2 ξ i 2 ) 2 δ ( E f c E i h j ħ ω 1 ħ ω 2 ) ,
T i , f c , h j ND = 1 m c E g E i c E f c + ħ ω 1 i ħ γ + 1 m c E g E i c E f c + ħ ω 2 i ħ γ +
1 m h j E g E i h j E f h j + ħ ω 1 + i ħ γ + 1 m h j E g E i h j E f h j + ħ ω 2 + i ħ γ 2 ,

Metrics