Abstract

A facile approach of fabricating a new type of hollow photonic band gap fibers is proposed. Templates for generating such fibers are demonstrated by a complete and uniform coating of a standard silica optical fiber (125 μm diameter) with a three-dimensional colloidal photonic crystal through isothermal heating evaporation induced self-assembly. The photonic crystal cylindrical annulus is characterized by optical and scanning electron microscopy, and is found to yield a 1.4-μm stop band by optical reflection and transmission spectroscopy. The results also demonstrate a practical means of enveloping macro- or micro-curved surfaces with three-dimensional photonic crystals, a task that is geometrically challenging by other photonic crystal fabrication methods.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. See, for example, J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic crystals: molding the flow of light (Princeton University Press, Princeton, 1995).
  2. T. A. Birks, P. J. Roberts, P. St. J. Russell, D. M. Atkin, and T. J. Shepherd, �??Full 2-D photonic bandgaps in silica/air structures,�?? Electron. Lett. 31, 1941-1943 (1995).
    [CrossRef]
  3. J. Broeng, T. A. Birks, and P. St. J. Russell, �??Photonic band gap guidance in optical fibers,�?? Science 282, 1476-1478 (1998).
    [CrossRef] [PubMed]
  4. Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, E. L. Thomas, �??A dielectric omnidirectional reflector,�?? Science 282, 1679-1682 (1998).
    [CrossRef] [PubMed]
  5. Y. Fink, D. J. Ripin, S. Fan, C. Chen, J. D. Joannopoulos, E. L. Thomas, �??Guiding optical light in air using an all-dielectric structure,�?? J. Lightwave Technol. 17, 2039-2041 (1999).
    [CrossRef]
  6. M. Ibanescu, S. G. Johnson, M. Soljacic, J. D. Joannopoulos, Y. Fink, O. Weisberg, T. D. Engeness, S. A. Jacobs, and M. Skorobogatiy, �??Analysis of mode structure in hollow dielectric waveguide fibers,�?? Phys. Rev. E 67, 046608-1-8 (2003).
    [CrossRef]
  7. K. Kuriki, O. Shapira, S. D. Hart, G. Benoit, Y. Kuriki, J. F. Viens, M. Bayindir, J. D. Joannopoulos, and Y. Fink, �??Hollow multilayer photonic bandgap fibers for NIR applications,�?? Opt. Express 12, 1510-1517 (2004), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-8-1510">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-8-1510</a> .
    [CrossRef] [PubMed]
  8. S. Wong, V. Kitaev, and G.A. Ozin, �??Colloidal Crystal Films: Advances in Universality and Perfection,�?? J. Amer. Chem. Soc. 125, 15589-15598 (2003).
    [CrossRef]
  9. H. Giesche, �??Synthesis of monodispersed silica powders II. Controlled growth reaction and continuous production process,�?? J. Eur. Ceramic Soc. 14, 205-214 (1994).
    [CrossRef]
  10. J. Li, L. E. Ladan, P. R. Herman, V. Kitaev, and G. A. Ozin, �??Colloidal photonic crystal mirrors for high-resolving- power Fabry-Perots,�?? in Technical Digest of Conference on Lasers and Electro-Optics (CLEO), CTuDD2 (San Francisco, CA, May 16-24, 2004).
  11. H. C. Nguyen, P. Domachuk, B. J. Eggleton, M. J. Steel, M. Straub, M. Gu, and M. Sumetsky, �??New slant on photonic crystal fibers, �?? Opt. Express 12, 1528-1539 (2004), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-8-1528">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-8-1528</a>.
    [CrossRef] [PubMed]
  12. A. Blanco, E. Chomski, S. Grabchak, M Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, �??Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,�?? Nature 405, 437-440 (2000).
    [CrossRef] [PubMed]
  13. Y. A. Vlasov, X. Bo, J. C. Sturn, D. J. Norris, �??On-chip natural assembly of silicon photonic bandgap crystals,�?? Nature 414, 289-293 (2001).
    [CrossRef] [PubMed]
  14. J. D. Joannopoulos, P. R. Villeneuve, and S. H. Fan, �??Photonic crystals: putting a new twist on light,�?? Nature 386, 143-149 (1997)
    [CrossRef]
  15. E. �?zbay, E. Michel, G. Tuttle, R. Biswas, M. Sigalas, and K. M. Ho, �??Micromachined millimeter-wave photonic band-gap crystals,�?? Appl. Phys. Lett. 64, 2059-2061 (1994).
    [CrossRef]
  16. S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, �??A three-dimensional photonic crystal operating at infrared wavelengths,�?? Nature 394, 251-253 (1998).
    [CrossRef]
  17. J. G. Fleming, S. Y. Lin, I. EI-Kady, R. Biswas, and K. M. Ho, �??All-metallic three-dimensional photonic crystals with a large infrared bandgap,�?? Nature 417, 52-55 (2002).
    [CrossRef] [PubMed]
  18. S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, �??Full three-dimensional photonic bandgap crystals at near-infrared wavelengths,�?? Science 289, 604-606 (2000).
    [CrossRef] [PubMed]
  19. S. G. Johnson and J. D. Joannopoulos, �??Three-dimensionally periodic dielectric layered structure with omnidirectional photonic band gap,�?? Appl. Phys. Lett. 77, 3490-3492 (2000).
    [CrossRef]
  20. Y. Fink, D. J. Ripin, S. Fan, C. Chen, J. D. Joannopoulos, E. L. Thomas, �??Guiding optical light in air using an all-dielectric structure,�?? J. Lightwave Technol. 17, 2039-2041 (1999).

Appl. Phys. Lett. (2)

E. �?zbay, E. Michel, G. Tuttle, R. Biswas, M. Sigalas, and K. M. Ho, �??Micromachined millimeter-wave photonic band-gap crystals,�?? Appl. Phys. Lett. 64, 2059-2061 (1994).
[CrossRef]

S. G. Johnson and J. D. Joannopoulos, �??Three-dimensionally periodic dielectric layered structure with omnidirectional photonic band gap,�?? Appl. Phys. Lett. 77, 3490-3492 (2000).
[CrossRef]

CLEO 2004 (1)

J. Li, L. E. Ladan, P. R. Herman, V. Kitaev, and G. A. Ozin, �??Colloidal photonic crystal mirrors for high-resolving- power Fabry-Perots,�?? in Technical Digest of Conference on Lasers and Electro-Optics (CLEO), CTuDD2 (San Francisco, CA, May 16-24, 2004).

Electron. Lett. (1)

T. A. Birks, P. J. Roberts, P. St. J. Russell, D. M. Atkin, and T. J. Shepherd, �??Full 2-D photonic bandgaps in silica/air structures,�?? Electron. Lett. 31, 1941-1943 (1995).
[CrossRef]

J. Amer. Chem. Soc. (1)

S. Wong, V. Kitaev, and G.A. Ozin, �??Colloidal Crystal Films: Advances in Universality and Perfection,�?? J. Amer. Chem. Soc. 125, 15589-15598 (2003).
[CrossRef]

J. Eur. Ceramic Soc. (1)

H. Giesche, �??Synthesis of monodispersed silica powders II. Controlled growth reaction and continuous production process,�?? J. Eur. Ceramic Soc. 14, 205-214 (1994).
[CrossRef]

J. Lightwave Technol. (2)

Nature (5)

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, �??A three-dimensional photonic crystal operating at infrared wavelengths,�?? Nature 394, 251-253 (1998).
[CrossRef]

J. G. Fleming, S. Y. Lin, I. EI-Kady, R. Biswas, and K. M. Ho, �??All-metallic three-dimensional photonic crystals with a large infrared bandgap,�?? Nature 417, 52-55 (2002).
[CrossRef] [PubMed]

A. Blanco, E. Chomski, S. Grabchak, M Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, �??Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,�?? Nature 405, 437-440 (2000).
[CrossRef] [PubMed]

Y. A. Vlasov, X. Bo, J. C. Sturn, D. J. Norris, �??On-chip natural assembly of silicon photonic bandgap crystals,�?? Nature 414, 289-293 (2001).
[CrossRef] [PubMed]

J. D. Joannopoulos, P. R. Villeneuve, and S. H. Fan, �??Photonic crystals: putting a new twist on light,�?? Nature 386, 143-149 (1997)
[CrossRef]

Opt. Express (2)

Phys. Rev. E (1)

M. Ibanescu, S. G. Johnson, M. Soljacic, J. D. Joannopoulos, Y. Fink, O. Weisberg, T. D. Engeness, S. A. Jacobs, and M. Skorobogatiy, �??Analysis of mode structure in hollow dielectric waveguide fibers,�?? Phys. Rev. E 67, 046608-1-8 (2003).
[CrossRef]

Science (3)

S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, �??Full three-dimensional photonic bandgap crystals at near-infrared wavelengths,�?? Science 289, 604-606 (2000).
[CrossRef] [PubMed]

J. Broeng, T. A. Birks, and P. St. J. Russell, �??Photonic band gap guidance in optical fibers,�?? Science 282, 1476-1478 (1998).
[CrossRef] [PubMed]

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, E. L. Thomas, �??A dielectric omnidirectional reflector,�?? Science 282, 1679-1682 (1998).
[CrossRef] [PubMed]

Other (1)

See, for example, J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic crystals: molding the flow of light (Princeton University Press, Princeton, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

A standard silica optical fiber of 125-μm diameter coated with silica microspheres: optical microscope image of a 3-cm coated fiber (a), and scanning electron microscope images at various magnifications (b – d).

Fig. 2.
Fig. 2.

Optical microscopy images of a bare (a) and a photonic crystal cladded (b) optical fiber of 125-νm diameter.

Fig. 3.
Fig. 3.

Normal incidence reflection spectrum produced by the colloidal photonic crystal cladded fibers as shown in Fig. 1.

Fig. 4.
Fig. 4.

Experimental arrangement (top) for recording the transverse transmission spectrum of the photonic crystal cladded fiber and a representative transmission spectrum (bottom) normalized to that without insertion of the photonic crystal cladded fiber. SMF: single-mode fiber; PCF: photonic crystal fiber.

Metrics