Abstract

The femtosecond laser-induced grating (FLIG) formation and crystallization were investigated in amorphous silicon (a-Si) films, prepared on glass by plasma-enhanced chemical-vapor deposition. Probe-beam diffraction, micro-Raman spectroscopy, atomic force microscopy, scanning electron microscopy, and transmission electron microscopy were employed to characterize the diffraction properties and the microstructures of FLIGs. It was found that i) the FLIG can be regarded as a pattern of alternating a-Si and microcrystalline-silicon (μc-Si) lines with a period of about 2 μm, and ii) efficient grating formation and crystallization were achieved by high-intensity recording with a short writing period.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. D. E. Carlson, and C.R. Wronski, "Amorphous silicon solar cell," Appl. Phys. Lett. 28, 671-673 (1976).
    [CrossRef]
  2. B. K. Nayak, B. Eaton, J. A. A. Selvan, J. Mcleskey, M. C. Gupta, R. Romero, and G. Ganguly, "Semiconductor laser crystallization of a-Si:H on conducting tin-oxide-coated glass for solar cell and display applications," Appl. Phys. A 80, 1077-1080 (2005).
    [CrossRef]
  3. T. Suzuki, and S. Adachi, "Optical properties of amorphous Si partially crystallized by thermal annealing," Jpn. J. Appl. Phys. 32, 4900-4906 (1993).
    [CrossRef]
  4. J. S. Im, and H. J. Kim, "Phase transformation mechanisms involved in excimer laser crystallization of amorphous sillicon films," Appl. Phys. Lett. 63, 1969-1971 (1993).
    [CrossRef]
  5. M. Miyasaka, and J. Stoemenos, "Excimer laser annealing of amorphous and solid-phase-crystallized sillicon films," J. Appl. Phys. 86, 5556-5565 (1999).
    [CrossRef]
  6. S. Y. Yoon, J. Y. Oh, C. O. Kim, and J. Jang, "Low temperature solid-phase crystallization of amorphous sillicon at 380 °C," J. Appl. Phys. 84, 6463-6465 (1998).
    [CrossRef]
  7. A. Mimura, N. Konishi, K. Ono, J. Ohwada, Y. Hosokawa, Y. Ono. T. Suzuki, K. Miyata, and H. Kawakami, "High performance low-temperature poly-Si n-channel TFT's for LCD," IEEE Trans. Electron Devices 36, 351-359 (1989).
    [CrossRef]
  8. J. S. Im, and H. J. Kim, "On the super lateral growth phenomenon observed in excimer laser-induced crystallization of thin Si films," Appl. Phys. Lett. 64, 2303-2305 (1994).
    [CrossRef]
  9. A. T. Voutsas, A. Limanov, and J. S. Im, "Effect of process parameters on the structural characteristics of laterally grown, laser-annealed polycrystalline silicon films," J. Appl. Phys. 94, 7445-7452 (2003).
    [CrossRef]
  10. C. Hayzelden, and J. L. Batstone, "Silicide formation and silicide-mediated crystallization of nickel-implanted amorphous silicon thin films," J. Appl. Phys. 73, 8279-8289 (1993).
    [CrossRef]
  11. J. Jang, J. Y. Oh, S. K. Kim, K. J. Cho, S. Y. Yoon, and C. O. Kim, "Electric-field-enhanced crystallization of amorphous silicon," Nature (London) 395, 481-483 (1998).
    [CrossRef]
  12. J.-M. Sieh, Z.-H. Chen, B.-T. Dai, Y.-C. Wang, A. Zaitsev, and C.-L. Pan, "Near-infrared femtosecond laser-induced crystallization of amorphous silicon," Appl. Phys. Lett. 85, 1232-1234 (2004).
    [CrossRef]
  13. B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tunnermann, "Femtosecond, picosecond and nanosecond laser ablation of solids," Appl. Phys. A 63, 109-115 (1996).
    [CrossRef]
  14. Y. Kuroiwa, N. Takeshima, Y. Narita, and S. Tanaka, "Arbitrary micropatterning method in femtosecond laser microprocessing using diffractive optical elements," Opt. Express 12, 1908-1915 (2004), <a href= "http://www.opticsexpress.org/abstract.cfm?URL=OPEX-12-9-1908">http://www.opticsexpress.org/abstract.cfm?URL=OPEX-12-9-1908</a>.
    [CrossRef] [PubMed]
  15. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, "Writing waveguides in glass with a femtosecond," Opt. Lett. 21, 1729-1731 (1996).
    [CrossRef] [PubMed]
  16. S. Kawata, H.-B. Sun, T. Tanaka, and K. Takada, "Finer features for functional microdevices: Micromachines can be created with higher resolution using two-photon absorption," Nature (London) 412, 697-698 (2001).
    [CrossRef]
  17. Z. Iqbal, and S. Veprek, "Raman scattering from hydrogenated microcrystalline and amorphous silicon," J. Phys. C: Solid State Phys. 15, 377-392 (1982).
    [CrossRef]
  18. L. Houben, M. Luysberg, P. Hapke, R. Carius, F. Finger, and H. Wagner, "Structural properties of microcrystalline silicon in the transition from highly crystalline to amorphous growth," Philos. Mag. A 77, 1447-1460 (1998).
    [CrossRef]
  19. T. Sameshima, "Laser processing for thin film transistor applications," Mater. Sci. Eng. B 45, 186-193 (1997).
    [CrossRef]
  20. G. Aichmayr, D. Toet, M. Mulato, P. V. Santos, A. Spangenberg, S. Christiansen, M. Albrecht, and H. P. Strunk, "Dynamics of lateral grain growth during the laser interference crystallization of a-Si," J. Appl. Phys. 85, 4010-4023 (1999) .
    [CrossRef]
  21. C.-H. Oh, M. Ozawa, and M. Matsumura, "A novel phase-modulated excimer-laser crystallization method of silicon thin films," Jpn. J. Appl. Phys. 37, L492-L495 (1998).
    [CrossRef]

Appl. Phys. A (2)

B. K. Nayak, B. Eaton, J. A. A. Selvan, J. Mcleskey, M. C. Gupta, R. Romero, and G. Ganguly, "Semiconductor laser crystallization of a-Si:H on conducting tin-oxide-coated glass for solar cell and display applications," Appl. Phys. A 80, 1077-1080 (2005).
[CrossRef]

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tunnermann, "Femtosecond, picosecond and nanosecond laser ablation of solids," Appl. Phys. A 63, 109-115 (1996).
[CrossRef]

Appl. Phys. Lett. (4)

D. E. Carlson, and C.R. Wronski, "Amorphous silicon solar cell," Appl. Phys. Lett. 28, 671-673 (1976).
[CrossRef]

J.-M. Sieh, Z.-H. Chen, B.-T. Dai, Y.-C. Wang, A. Zaitsev, and C.-L. Pan, "Near-infrared femtosecond laser-induced crystallization of amorphous silicon," Appl. Phys. Lett. 85, 1232-1234 (2004).
[CrossRef]

J. S. Im, and H. J. Kim, "Phase transformation mechanisms involved in excimer laser crystallization of amorphous sillicon films," Appl. Phys. Lett. 63, 1969-1971 (1993).
[CrossRef]

J. S. Im, and H. J. Kim, "On the super lateral growth phenomenon observed in excimer laser-induced crystallization of thin Si films," Appl. Phys. Lett. 64, 2303-2305 (1994).
[CrossRef]

IEEE Trans. Electron Devices (1)

A. Mimura, N. Konishi, K. Ono, J. Ohwada, Y. Hosokawa, Y. Ono. T. Suzuki, K. Miyata, and H. Kawakami, "High performance low-temperature poly-Si n-channel TFT's for LCD," IEEE Trans. Electron Devices 36, 351-359 (1989).
[CrossRef]

J. Appl. Phys (1)

G. Aichmayr, D. Toet, M. Mulato, P. V. Santos, A. Spangenberg, S. Christiansen, M. Albrecht, and H. P. Strunk, "Dynamics of lateral grain growth during the laser interference crystallization of a-Si," J. Appl. Phys. 85, 4010-4023 (1999) .
[CrossRef]

J. Appl. Phys. (4)

A. T. Voutsas, A. Limanov, and J. S. Im, "Effect of process parameters on the structural characteristics of laterally grown, laser-annealed polycrystalline silicon films," J. Appl. Phys. 94, 7445-7452 (2003).
[CrossRef]

C. Hayzelden, and J. L. Batstone, "Silicide formation and silicide-mediated crystallization of nickel-implanted amorphous silicon thin films," J. Appl. Phys. 73, 8279-8289 (1993).
[CrossRef]

M. Miyasaka, and J. Stoemenos, "Excimer laser annealing of amorphous and solid-phase-crystallized sillicon films," J. Appl. Phys. 86, 5556-5565 (1999).
[CrossRef]

S. Y. Yoon, J. Y. Oh, C. O. Kim, and J. Jang, "Low temperature solid-phase crystallization of amorphous sillicon at 380 °C," J. Appl. Phys. 84, 6463-6465 (1998).
[CrossRef]

J. Phys. C: Solid State Phys. (1)

Z. Iqbal, and S. Veprek, "Raman scattering from hydrogenated microcrystalline and amorphous silicon," J. Phys. C: Solid State Phys. 15, 377-392 (1982).
[CrossRef]

Jpn. J. Appl. Phys. (2)

T. Suzuki, and S. Adachi, "Optical properties of amorphous Si partially crystallized by thermal annealing," Jpn. J. Appl. Phys. 32, 4900-4906 (1993).
[CrossRef]

C.-H. Oh, M. Ozawa, and M. Matsumura, "A novel phase-modulated excimer-laser crystallization method of silicon thin films," Jpn. J. Appl. Phys. 37, L492-L495 (1998).
[CrossRef]

Mater. Sci. Eng. B (1)

T. Sameshima, "Laser processing for thin film transistor applications," Mater. Sci. Eng. B 45, 186-193 (1997).
[CrossRef]

Nature (London) (2)

J. Jang, J. Y. Oh, S. K. Kim, K. J. Cho, S. Y. Yoon, and C. O. Kim, "Electric-field-enhanced crystallization of amorphous silicon," Nature (London) 395, 481-483 (1998).
[CrossRef]

S. Kawata, H.-B. Sun, T. Tanaka, and K. Takada, "Finer features for functional microdevices: Micromachines can be created with higher resolution using two-photon absorption," Nature (London) 412, 697-698 (2001).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Philos. Mag. A (1)

L. Houben, M. Luysberg, P. Hapke, R. Carius, F. Finger, and H. Wagner, "Structural properties of microcrystalline silicon in the transition from highly crystalline to amorphous growth," Philos. Mag. A 77, 1447-1460 (1998).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(a), (b) Diffraction behaviors and (c) diffraction pattern of the probe beam from the FLIGs recorded in a-Si film using two interfering femtosecond-laser pulses: (a) 68 μJ and 68 μJ; (b), (c) 365 μJ and 365 μJ. In the grating formation dynamics [(a) and (b)], the horizontal bars represent the writing periods of two interfering beams for recording the grating. Here and all the following figures, the abbreviation “a. u.” stands for arbitrary units.

Fig. 2.
Fig. 2.

AFM images for the FLIGs formed in a-Si film by femtosecond holography. The gratings were fabricated using (a) 51720 shots of two 68-μJ laser beams and (b) 200 shots of two 365-μJ beams. In the line profile average at the bottom of each figure, the surface profile is vertically averaged in order to show the grating structure along the horizontal direction.

Fig. 3.
Fig. 3.

Typical micro-Raman spectra for the femtosecond-laser-modified and the unexposed regions. Solid circles and squares represent the micro-Raman spectra of μc-Si and a-Si regions, respectively.

Fig. 4.
Fig. 4.

SEM and FESEM images for the μc-Si film formed by femtosecond holography. (a), (b) the μc-Si film, and (c) the a-Si film. (a) ×8000, (b) ×50000, and (c) ×8000. The high-resolution image in (b) was obtained by FESEM. The μc-Si sample was fabricated using 200 shots of two 365-μJ laser beams.

Fig. 5
Fig. 5

(a), (b) Plan-view, bright-field TEM images and (c), (d) the corresponding indexed ED patterns for μc-Si films formed by femtosecond holography. For comparison, the ED pattern of an unexposed a-Si film is shown in (e). The μc-Si samples were fabricated using 51720 shots of two 68-μJ laser beams [see (a) and (c)] and 200 shots of two 365-μJ laser beams [(b) and (d)].

Fig. 6
Fig. 6

(a) Average grain size as a function of laser-shot number. The average grain sizes were determined from the TEM analysis. (b) Diffraction intensity and crystalline Raman peak height as a function of laser-shot number. The diffraction intensity vs. laser-shot number plot was obtained by measuring the time evolution of diffraction signals during the irradiation of 90000 laser shots, and the Raman peak height vs. laser-shot number plot by measuring the micro-Raman spectra of seven different μc-Si samples crystallized with various laser-shot numbers.

Metrics