Abstract

We report an optical coherence tomography (OCT) scanner design with optimized quasi-telecentric optics. This scanner achieves a uniform, Gaussian spot size of 15μm (1/e2 diameter) over a range of 4.4mm in two orthogonal transverse scan dimensions. Model simulation using optical design software agrees with measurements by beam analyzer. We provide a reasonable design criterion of 0.05 (the ratio of the half separation of two orthogonal scanning mirrors to the front focal length of the optics that follow) for the quasi-telecentric scanner which corresponds to a spot-size and spot ellipticity variation of only 4% over the transverse scan range. Furthermore, this OCT scanner accommodates a microscope to precisely guide and document OCT imaging of small samples. OCT images of in-vivo human skin, human nail fold, and embryonic hearts (avian stage 22 and stage 28) demonstrate the image quality achieved with the scanner. The results indicate that optimizing the sample scanner optical design is important for optimizing OCT image quality.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. D. Huang, E.A. Swanson, C.P. Lin, J.S. Schuman, W.G. Stinson, W. Chang, M.R. Hee, T. Flotte, K. Gregory, C.A. Puliafito, and J.G. Fujimoto, "Optical Coherence Tomography," Science, 254 1178-1181 (1991).
    [CrossRef] [PubMed]
  2. G.J. Tearney, B.E. Bouma, and J.G. Fujimoto, "High Speed Phase- and Group-Delay Scanning with a Grating-Based Phase Control Delay Line," Opt. Lett., 22 1811-1813 (1997).
    [CrossRef]
  3. A.M. Rollins, M.D. Kulkarni, S. Yazdanfar, R. Un-arunyawee, and J.A. Izatt, "In Vivo Video Rate Optical Coherence Tomography," Opt. Express, 3 219-229 (1998).
    [CrossRef] [PubMed]
  4. B.E. Bouma, G.J. Tearney, C.C. Compton, and N.S. Nishioka, "High-resolution imaging of the human esophagus and stomach in vivo using optical coherence tomography.," Gastrointest Endosc, 51 467-74 (2000).
    [CrossRef] [PubMed]
  5. M.V. Sivak, Jr., K. Kobayashi, J.A. Izatt, A.M. Rollins, R. Ung-Runyawee, A. Chak, R.C. Wong, G.A. Isenberg, and J. Willis, "High-resolution endoscopic imaging of the GI tract using optical coherence tomography," Gastrointest Endosc, 51 474-9 (2000).
    [CrossRef] [PubMed]
  6. S. Radhakrishnan, A.M. Rollins, J.E. Roth, S. Yazdanfar, V. Westphal, D.S. Bardenstein, and J.A. Izatt, "Real-time optical coherence tomography of the anterior segment at 1310 nm," Arch Ophthalmol, 119 1179-85 (2001).
    [PubMed]
  7. I.K. Jang, B.E. Bouma, D.H. Kang, S.J. Park, S.W. Park, K.B. Seung, K.B. Choi, M. Shishkov, K. Schlendorf, E. Pomerantsev, S.L. Houser, H.T. Aretz, and G.J. Tearney, "Visualization of coronary atherosclerotic plaques in patients using optical coherence tomography: Comparison with intravascular ultrasound," J. Am. Coll. Cardiol., 39 604-609 (2002).
    [CrossRef] [PubMed]
  8. A.F. Fercher, C.K. Hitzenberger, G. Kamp, and S.Y. EI-Zaiat, "Measurement of intraocular distances by backscattering spectral interferometry," Opt. Commun., 11 43-48 (1995).
    [CrossRef]
  9. M.A. Choma, M.V. Sarunic, C. Yang, and J.A. Izatt, "Sensitivity advantage of swept source and Fourier domain optical coherence tomography," Opt. Express, 11 2183-2189 (2003).
    [CrossRef] [PubMed]
  10. R.A. Leitgeb, L. Schmetterer, C.K. Hitzenberger, and A.F. Fercher, "Real-time measurement of in vitro flow by Fourier-domain color Doppler optical coherence tomography," Opt. Lett., 29 171-173 (2004).
    [CrossRef] [PubMed]
  11. B. Povazay, K. Bizheva, A. Unterhuber, B. Hermann, H. Sattmann, A. F. Fercher, and W. Drexler, "Submicrometer axial resolution optical coherence tomography," Opt. Lett., 27 1800-2 (2002).
    [CrossRef]
  12. Y. Wang, Y. Zhao, J.S. Nelson, and Z. Chen, "Ultrahigh-resolution optical coherence tomography by broadband continuum generation from a photonic crystal fiber," Opt. Lett., 28 182-184 (2003).
    [CrossRef] [PubMed]
  13. N. Nishizawa, Y. Chen, P. Hsiung, E.P. Ippen, and J.G. Fujimoto, "Real-time, ultrahigh-resolution, optical coherence tomography with an all-fiber, femtosecond fiber laser continuum at 1.5 mm," Opt. Lett., 29 2846-8 (2004).
    [CrossRef]
  14. F.I. Feldchtein, V.M. Gelikonov, and G.V. Gelikonov, "Design of OCT Scanners," in Handbook of optical coherence tomography, B.E. Bouma and G.J. Tearney, Editors, (Marcel Dekker: New York. 2002).
  15. B.M. Hoeling, A.D. Fernandez, R.C. Haskell, E. Huang, W.R. Myers, D.C. Petersen, S.E. Ungersma, R. Wang, M.E. Williams, and S.E. Fraser, "An optical coherence microscope for 3-dimensional imaging in developmental biology" Opt. Express. 6 (2000).
    [CrossRef] [PubMed]
  16. A.G. Podoleanu, J.A. Rogers, and D.A. Jackson, "Three dimensional OCT images from retina and skin," Opt. Express, 7 292-8 (2000).
    [CrossRef] [PubMed]
  17. A. REEVES, "In vivo three-dimensional imaging of plants with optical coherence microscopy," J. Microsco., 208 177�??189 (2002).
    [CrossRef]
  18. C.K. Hitzenberger, P. Trost, P.-W. Lo, and Q. Zhou, "Three-dimensional imaging of the human retina by high-speed optical coherence tomography," Opt. Express, 11 2753-2761 (2003).
    [CrossRef] [PubMed]
  19. W.J. Smith, Modern Optical Engineering. Third ed, (McGraw-Hill. 2000).
  20. M. Watanable and S.K. Nayar, "Telecentric Optics for Focus Analysis," IEEE trans. pattern. anal. mach. intell., 19 1360-1365 (1997).
    [CrossRef]
  21. E.H.K. Stelzer, "The Intermediate Optical System in Confocal Microscopes," in The handbook of biological confocal microscopy, J. Pawley, Editor, (IMR Press: Madison. 1989).
  22. J.S. Ploem, "Laser scanning fluorescence microscopy," Appl. Opt., 26 3226-3231 (1987).
    [CrossRef] [PubMed]
  23. M. Hafez, T. Sidler, and R.-P. Salathe, "Study of the beam path distortion profiles generated by a two-axis tilt single-mirror laser scanner," Opt. Eng., 42 1048-1057 (2003).
    [CrossRef]
  24. N. Callamras and I. Parker, "Construction of a confocal microscope for real-time x-y and x-z imaging," Cell Calcium, 26 271-279 (1999).
    [CrossRef]
  25. P.E. Verboven, "Distortion correction formulas for pre-objective dual galvanometer laser scanning," Appl. Opt., 27 4172-4173 (1988).
    [CrossRef] [PubMed]
  26. A.M. Rollins, R. Ung-Arunyawee, A. Chak, R.C.K. Wong, K. Kobayashi, J. Michael V Sivak, and J.A. Izatt, "Real-time in vivo imaging of human gastrointestinal ultrastructure using endoscopic optical coherence tomography with a novel efficient interferometer design," Opt. Lett., 24 1358-1360 (1999).
    [CrossRef]
  27. P. Pleckman and C. Allan, "Surgicl Anatomy of the Nail Unit," Dermatol. Surg., 27 257-260 (2001).
  28. M. W. Jenkins1, F. Rothenberg2, D. Roy1, V. P. Nikolski3, Z. Hu1, M. Watanabe4, D. L. Wilson1, I. R. Efimov3, and A.M. Rollins1, 1, 4Case Western Reserve University, Cleveland, Ohio 44106, 2Duke University and 3Washington University, are preparing a manuscript to be called "4D Embryonic Cardiography using Gated Optical Coherence Tomography".

Appl. Opt.

Arch Ophthalmol

S. Radhakrishnan, A.M. Rollins, J.E. Roth, S. Yazdanfar, V. Westphal, D.S. Bardenstein, and J.A. Izatt, "Real-time optical coherence tomography of the anterior segment at 1310 nm," Arch Ophthalmol, 119 1179-85 (2001).
[PubMed]

Cell Calcium

N. Callamras and I. Parker, "Construction of a confocal microscope for real-time x-y and x-z imaging," Cell Calcium, 26 271-279 (1999).
[CrossRef]

Dermatol. Surg.

P. Pleckman and C. Allan, "Surgicl Anatomy of the Nail Unit," Dermatol. Surg., 27 257-260 (2001).

Gastrointest Endosc

B.E. Bouma, G.J. Tearney, C.C. Compton, and N.S. Nishioka, "High-resolution imaging of the human esophagus and stomach in vivo using optical coherence tomography.," Gastrointest Endosc, 51 467-74 (2000).
[CrossRef] [PubMed]

M.V. Sivak, Jr., K. Kobayashi, J.A. Izatt, A.M. Rollins, R. Ung-Runyawee, A. Chak, R.C. Wong, G.A. Isenberg, and J. Willis, "High-resolution endoscopic imaging of the GI tract using optical coherence tomography," Gastrointest Endosc, 51 474-9 (2000).
[CrossRef] [PubMed]

Handbook of optical coherence tomography

F.I. Feldchtein, V.M. Gelikonov, and G.V. Gelikonov, "Design of OCT Scanners," in Handbook of optical coherence tomography, B.E. Bouma and G.J. Tearney, Editors, (Marcel Dekker: New York. 2002).

IEEE trans. pattern. anal. mach. intell.

M. Watanable and S.K. Nayar, "Telecentric Optics for Focus Analysis," IEEE trans. pattern. anal. mach. intell., 19 1360-1365 (1997).
[CrossRef]

J. Am. Coll. Cardiol.

I.K. Jang, B.E. Bouma, D.H. Kang, S.J. Park, S.W. Park, K.B. Seung, K.B. Choi, M. Shishkov, K. Schlendorf, E. Pomerantsev, S.L. Houser, H.T. Aretz, and G.J. Tearney, "Visualization of coronary atherosclerotic plaques in patients using optical coherence tomography: Comparison with intravascular ultrasound," J. Am. Coll. Cardiol., 39 604-609 (2002).
[CrossRef] [PubMed]

J. Microsco

A. REEVES, "In vivo three-dimensional imaging of plants with optical coherence microscopy," J. Microsco., 208 177�??189 (2002).
[CrossRef]

Opt. Commun.

A.F. Fercher, C.K. Hitzenberger, G. Kamp, and S.Y. EI-Zaiat, "Measurement of intraocular distances by backscattering spectral interferometry," Opt. Commun., 11 43-48 (1995).
[CrossRef]

Opt. Eng.

M. Hafez, T. Sidler, and R.-P. Salathe, "Study of the beam path distortion profiles generated by a two-axis tilt single-mirror laser scanner," Opt. Eng., 42 1048-1057 (2003).
[CrossRef]

Opt. Express

Opt. Express.

B.M. Hoeling, A.D. Fernandez, R.C. Haskell, E. Huang, W.R. Myers, D.C. Petersen, S.E. Ungersma, R. Wang, M.E. Williams, and S.E. Fraser, "An optical coherence microscope for 3-dimensional imaging in developmental biology" Opt. Express. 6 (2000).
[CrossRef] [PubMed]

Opt. Lett.

Science

D. Huang, E.A. Swanson, C.P. Lin, J.S. Schuman, W.G. Stinson, W. Chang, M.R. Hee, T. Flotte, K. Gregory, C.A. Puliafito, and J.G. Fujimoto, "Optical Coherence Tomography," Science, 254 1178-1181 (1991).
[CrossRef] [PubMed]

The handbook of biological confocal micr

E.H.K. Stelzer, "The Intermediate Optical System in Confocal Microscopes," in The handbook of biological confocal microscopy, J. Pawley, Editor, (IMR Press: Madison. 1989).

Other

W.J. Smith, Modern Optical Engineering. Third ed, (McGraw-Hill. 2000).

M. W. Jenkins1, F. Rothenberg2, D. Roy1, V. P. Nikolski3, Z. Hu1, M. Watanabe4, D. L. Wilson1, I. R. Efimov3, and A.M. Rollins1, 1, 4Case Western Reserve University, Cleveland, Ohio 44106, 2Duke University and 3Washington University, are preparing a manuscript to be called "4D Embryonic Cardiography using Gated Optical Coherence Tomography".

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Layout of quasi-telecentric OCT scanner optical design with view port and microscope, modeled by Zemax. AL, aspheric lens; X-Y Galvs, x-y galvanometric scan head; LP_1 and LP_2, achromatic lens pairs; M_1 and M_2, folding mirrors; OB_1 and OB_2, identical objectives; DM, dichroic mirror; IS, 1:1 image of sample (view port).

Fig. 2.
Fig. 2.

(a)–(c) Cross section profiles of the spots simulated by Zemax;.(d)–(f) Spot profiles corresponding to (a)–(c) measured by beam analyzer. Mesh grid and Zemax windows are 20×20 μm. Center means the beam goes through the center of the optics (on axis), while x and y mean tilting the x and y mirrors, respectively, to translate the beam in either x or y direction by 2.2mm.

Fig. 3.
Fig. 3.

Simulations showing variation of the relative off-axis spot profile with QTP. Diamond and square represent spot size variation and ellipticity respectively

Fig. 4.
Fig. 4.

OCT images of in vivo human skin recorded using the quasi-telecentric scanner. Image dimensions: vertical 2.8mm, horizontal 3.9mm. Images recorded at 8 frames per second with four-frame rolling average, and displayed without additional processing. (a)—Nail fold; (b)—Thick skin (palm of hand); (c)—Thick skin (finger pad); (d)—Thin skin (back of hand). Note uniform image quality across the lateral field of view. Note fine structures that are not always resolved in OCT images of skin acquired without high quality scanning optics, such as resolution of stratum corneum from living epidermis and epidermis from dermis in thin skin. BV—Blood vessels; DM—Dermis; ED—Epidermis; NP—Nail plate; PNF—Proximal nail fold; SC—Stratum corneum; SD—Sweat duct. All tissue identification is tentative, made by comparison with published histology, in the absence of directly corresponding histology (biopsies of imaged sites were not taken).

Fig. 5.
Fig. 5.

OCT images of embryonic chick heart on (A)day 5 (Stage 28) and (B) day 6 (Stage 30). OFT--Outflow tract; tr—trabecular network; epi – epicardium; AVC – atrioventricular cushion; ivs -- interventricular septum; RV—Right ventricle; LV—Left ventricle; CM—Compact myocardium.

Metrics