Abstract

We report on an experimental study of supercontinuum broadening in photonic crystal fiber performed by measuring the temporal behavior of spectrally-sliced radiation in different propagation regimes. The study confirms the soliton fission theory by observing the red-shifted fundamental solitons and blue-shifted nonsolitonic radiation.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. O. G. Okhotnikov, L. Gomes, N. Xiang, T. Jouhti, and A. B. Grudinin, �??Mode-locked ytterbium fiber laser tunable in the 980-1070 -nm spectral range,�?? Opt. Lett. 28, 1522 (2003).
    [CrossRef] [PubMed]
  2. O. G. Okhotnikov, T. Jouhti, J. Konttinen, S. Karirinne and M. Pessa, �??1.5- µm monolithic GaInNAs semiconductor saturable-absorber mode locking of an erbium fiber laser,�?? Opt. Lett. 28, 364 (2003).
    [CrossRef] [PubMed]
  3. M. Rusu, S. Karirinne, M. Guina, A. B. Grudinin, and O. G. Okhotnikov, �??Femtosecond neodymium-doped fiber laser operating in the 894-909 nm spectral range,�?? IEEE Photonics Technol. Lett. 16, 1029 (2004).
    [CrossRef]
  4. Fianium Ltd., Femtopower FP1060 product datasheet, <a href="http://www.fianium.com">http://www.fianium.com</a>
  5. A. B. Rulkov, M. Y. Vyatkin, S. V. Popov, J. R. Taylor, and V. P. Gapontsev, �??High brightness all-fiber generation in 525-1800 nm range with picosecond Yb pumping,�?? Opt. Express 13, 377-381 (2005), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-2-377">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-2-377</a>
    [CrossRef] [PubMed]
  6. K. Sakamaki, M. Nakao, M. Naganuma, and M. Izutsu, �??Soliton Induced Supercontinuum Generation in Photonic Crystal Fiber,�?? IEEE J. Quantum Electron. 10, 876-883 (2004).
    [CrossRef]
  7. S. Coen, A. H. L. Chau, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, �??Supercontinuum generation by stimulated Raman scattering and parametric four-wave mixing in photonic crystal fibers,�?? J. Opt. Soc. Am. B 19, 753-764 (2002).
    [CrossRef]
  8. J. M. Dudley, L. Provino, N. Grossard, H. Maillotte, R. S. Windeler, B. J. Eggleton, and S. Coen, �??Supercontinuum generation in air-silica microstructured fibers with nanosecond and femtosecond pulse pumping,�?? J. Opt. Soc. Am. B 19, 765-771 (2002).
    [CrossRef]
  9. A. V. Husakou and J. Herrmann, �??Supercontinuum Generation of Higher-Order Solitons by Fission in Photonic Crystal Fibers,�?? Phys. Rev. Lett. 87, 203901(1)-203901(4) (2001).
    [CrossRef]
  10. N. I. Nikolov, T. Sorensen, O. Bang, and A. Bjarklev, �??Improving efficiency of supercontinuum generation in photonic crystal fibers by direct degenerate four-wave mixing,�?? J. Opt. Soc. Am. B 20, 2329-2337 (2003).
    [CrossRef]
  11. J. Herrmann, U. Griebner, N. Zhavoronkov, A. Housakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, �??Experimental Evidence for Supercontinuum Generation by Fission of Higher-Order Solitons in Photonic Fibers,�?? Phys. Rev. Lett. 88, 173901 1-4 (2002).
    [CrossRef] [PubMed]
  12. T. Schreiber, J. Limpert, H. Zellmer, A. Tünnermann and K. P. Hansen, �??High average power supercontinuum generation in photonic crystal fibers,�?? Opt. Commun. 228, 71-78 (2003).
    [CrossRef]
  13. J. M. Dudley, X. Gu, L. Xu, M. Kimmel, E. Zeek, P. O'Shea, R. Trebino, S. Coen, and R. S. Windeler, "Cross-correlation frequency resolved optical gating analysis of broadband continuum generation in photonic crystal fiber: simulations and experiments," Opt. Express 10, 1215-1221 (2002), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-21-1215">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-21-1215</a>
    [PubMed]
  14. K. M. Hilligsoe, H. N. Paulsen, J. Thogersen, S. R. Keiding, and J. J. Larsen, �??Initial steps of supercontinuum generation in photonic crystal fibers,�?? J. Opt. Soc. Am. B 20, 1887-1893 (2003).
    [CrossRef]
  15. I. Zeylikovich, V. Kartazaev, and R. R. Alfanov, �??Spectral, temporal, and coherence properties of supercontinuum generation in microstructure fiber,�?? J. Opt. Soc. Am. B 22, 1453-1460 (2005).
    [CrossRef]
  16. T. Hori, N. Nishizawa, T. Goto, and M. Yoshida, �??Experimental and numerical analysis of widely broadened supercontinuum generation in highly nonlinear dispersion-shifted fiber with a femtosecond pulse,�?? J. Opt. Soc. Am. B 21, 1969-1980 (2004).
    [CrossRef]
  17. J. M. Dudley and S. Coen, �??Numerical Simulations and Coherence Properties of Supercontinuum Generation in Photonic Crystal and Tapered Optics Fibers,�?? IEEE Sel. Top. Quantum Electron. 8, 651-659 (2002).
    [CrossRef]
  18. K. Mori, H. Takara, and S. Kawanishi, �??Analysis and design of supercontinuum pulse generation in single-mode optical fiber,�?? J. Opt. Soc. Am. B 18, 1780-1792 (2001).
    [CrossRef]

IEEE J. Quantum Electron. (1)

K. Sakamaki, M. Nakao, M. Naganuma, and M. Izutsu, �??Soliton Induced Supercontinuum Generation in Photonic Crystal Fiber,�?? IEEE J. Quantum Electron. 10, 876-883 (2004).
[CrossRef]

IEEE Photonics Technol. Lett. (1)

M. Rusu, S. Karirinne, M. Guina, A. B. Grudinin, and O. G. Okhotnikov, �??Femtosecond neodymium-doped fiber laser operating in the 894-909 nm spectral range,�?? IEEE Photonics Technol. Lett. 16, 1029 (2004).
[CrossRef]

IEEE Sel. Top. Quantum Electron. (1)

J. M. Dudley and S. Coen, �??Numerical Simulations and Coherence Properties of Supercontinuum Generation in Photonic Crystal and Tapered Optics Fibers,�?? IEEE Sel. Top. Quantum Electron. 8, 651-659 (2002).
[CrossRef]

J. Opt. Soc. Am. B (7)

K. Mori, H. Takara, and S. Kawanishi, �??Analysis and design of supercontinuum pulse generation in single-mode optical fiber,�?? J. Opt. Soc. Am. B 18, 1780-1792 (2001).
[CrossRef]

K. M. Hilligsoe, H. N. Paulsen, J. Thogersen, S. R. Keiding, and J. J. Larsen, �??Initial steps of supercontinuum generation in photonic crystal fibers,�?? J. Opt. Soc. Am. B 20, 1887-1893 (2003).
[CrossRef]

I. Zeylikovich, V. Kartazaev, and R. R. Alfanov, �??Spectral, temporal, and coherence properties of supercontinuum generation in microstructure fiber,�?? J. Opt. Soc. Am. B 22, 1453-1460 (2005).
[CrossRef]

T. Hori, N. Nishizawa, T. Goto, and M. Yoshida, �??Experimental and numerical analysis of widely broadened supercontinuum generation in highly nonlinear dispersion-shifted fiber with a femtosecond pulse,�?? J. Opt. Soc. Am. B 21, 1969-1980 (2004).
[CrossRef]

N. I. Nikolov, T. Sorensen, O. Bang, and A. Bjarklev, �??Improving efficiency of supercontinuum generation in photonic crystal fibers by direct degenerate four-wave mixing,�?? J. Opt. Soc. Am. B 20, 2329-2337 (2003).
[CrossRef]

S. Coen, A. H. L. Chau, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, �??Supercontinuum generation by stimulated Raman scattering and parametric four-wave mixing in photonic crystal fibers,�?? J. Opt. Soc. Am. B 19, 753-764 (2002).
[CrossRef]

J. M. Dudley, L. Provino, N. Grossard, H. Maillotte, R. S. Windeler, B. J. Eggleton, and S. Coen, �??Supercontinuum generation in air-silica microstructured fibers with nanosecond and femtosecond pulse pumping,�?? J. Opt. Soc. Am. B 19, 765-771 (2002).
[CrossRef]

Opt. Commun. (1)

T. Schreiber, J. Limpert, H. Zellmer, A. Tünnermann and K. P. Hansen, �??High average power supercontinuum generation in photonic crystal fibers,�?? Opt. Commun. 228, 71-78 (2003).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Phys. Rev. Lett. (2)

A. V. Husakou and J. Herrmann, �??Supercontinuum Generation of Higher-Order Solitons by Fission in Photonic Crystal Fibers,�?? Phys. Rev. Lett. 87, 203901(1)-203901(4) (2001).
[CrossRef]

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Housakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, �??Experimental Evidence for Supercontinuum Generation by Fission of Higher-Order Solitons in Photonic Fibers,�?? Phys. Rev. Lett. 88, 173901 1-4 (2002).
[CrossRef] [PubMed]

Other (1)

Fianium Ltd., Femtopower FP1060 product datasheet, <a href="http://www.fianium.com">http://www.fianium.com</a>

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Supercontinuum slicing setup with fiber MOPA pump source. MOPA: master oscillator and power amplifier

Fig. 2.
Fig. 2.

Intensity autocorrelation and spectrum of the fiber source taken at full power.

Fig. 3.
Fig. 3.

Compressed pulse autocorrelation and spectrum.

Fig. 4.
Fig. 4.

Supercontinuum spectrum obtained with the setup shown in Fig. 1. Input laser spectrum at 1.06 μm is plotted with a red line. The inset shows the PCF dispersion map.

Fig. 5.
Fig. 5.

Supercontinuum spectrum when uncompressed pulses are coupled into PCF (15 m of NL-5.0-1065 fiber). Input average power is 4 W, and output power is 1W. Input laser spectrum is plotted with red line.

Fig. 6.
Fig. 6.

Autocorrelations and spectra of the SC pulses in normal dispersion region, at 770 nm (a and b) and 880 nm (c and d).

Fig. 7.
Fig. 7.

Autocorrelation and spectrum of pulse sliced near zero dispersion wavelength (1065 nm)

Fig. 8.
Fig. 8.

Autocorrelation and spectra of pulses in anomalous dispersion regime: 1200 nm (a, b), 1400 nm (c, d), and 1500 nm (e, f).

Fig. 9.
Fig. 9.

Oscilloscope traces showing pulse train for soliton propagation regime (top) and normal dispersion regime (bottom).

Metrics