Abstract

We demonstrate the transfer of a shaped spectral phase in a pulse with a sub-20-fs pulse Fourier limit of a Ti:sapphire laser to that in a deep UV pulse at 256 nm in a sum- frequency-mixing process. The generated UV pulse maintains a sufficiently broad spectrum to form a sub-20-fs pulse due to broadband sum-frequency mixing with the group-delay-dispersion-matched scheme. The spectral phases of the deep UV pulse are measured with spectral phase interferometry for direct electric field reconstruction and compared with the phase applied to the Ti:sapphire laser pulse.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. N. Dudovich, B. Dayan, S. M. Gallagher, and Y. Silberberg, �??Transform-limited pulses are not optimal for resonant multiphoton transition,�?? Phys. Rev. Lett. 86, 47�??50 (2001).
    [CrossRef] [PubMed]
  2. V. V. Lozovoy, I. Pastirk, and M. Dantus, �??Multiphoton intrapulse interference IV. Ultrashort laser pulse spectral phase characterization and compensation,�?? Opt. Lett. 29, 775�??777 (2004).
    [CrossRef] [PubMed]
  3. I. Pastirk, J. M. D. Cruz, K. A. Walowicz, V. V. Lozovoy, and M. Dantus, �??Selective two-photon microscopy with shaped femtosecond pulses,�?? Opt. Express 11, 1695�??1701 (2003). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-14-1695">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-14-1695</a>
    [CrossRef] [PubMed]
  4. A. M. Weiner, �??Femtosecond pulse shaping using spatial light modulators,�?? Rev. Sci. Instrum. 71, 1929�??1960 (2000).
    [CrossRef]
  5. F. Verluise, V. Laude, Z. Cheng, and C. S. P. Tournois, �??Amplitude and phase control of ultrashort pulses by use of an acousto-optic programmable dispersive filter: pulse compression and shaping,�?? Opt. Lett. 25, 575�??577 (2000).
    [CrossRef]
  6. M. Hacker, G. Stobrawa, R. Sauerbrey, T. Buckup, M. Motzkus, M. Wildenhain, and A. Gehner, �??Micromirror SLM for femtosecond pulse shaping in the ultraviolet,�?? Appl. Phys. B 76, 711�??714 (2003).
    [CrossRef]
  7. P. Baum, S. Lochbrunner, and E. Riedle, �??Generation of tunable 7-fs ultraviolet pulses: achromatic phase matching and chirp management,�?? Appl. Phys. B 79, 1027�??1032 (2004).
    [CrossRef]
  8. P. Baum, S. Lochbrunner, and E. Riedle, �??Tunable sub-10-fs ultraviolet pulses generated by achromatic frequency doubling,�?? Opt. Lett. 29, 1686�??1689 (2004).
    [CrossRef] [PubMed]
  9. M. Roth, M. Mehendale, A. Bartelt, and H. Rabitz, �??Acousto-optical shaping of ultraviolet femtosecond pulses,�?? Appl. Phys. B 80, 441�??444 (2005).
    [CrossRef]
  10. Y. Nabekawa and K. Midorikawa, �??Broadband sum frequency mixing using noncollinear angularly dispersed geometry for indirect phase control of sub-20-femtosecond UV pulses,�?? Opt. Express 11, 324�??338 (2003). <a href=" http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-4-324">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-4-324.</a>
    [CrossRef] [PubMed]
  11. C. Iaconis and I. A.Walmsley, �??Self-referencing spectral interferometry for measuring ultrashort optical pulses,�?? IEEE J. Quantum Electron. 35, 501�??509 (1999) .
    [CrossRef]
  12. H.-S. Tan, E. Schreiber, and W. S. Warren, �??High-resolution indirect pulse shaping by parametric transfer,�?? Opt. Lett. 27, 439�??441 (2002).
    [CrossRef]
  13. T.Witte, K. L. Kompa, and M. Motzkus, �??Femtosecond pulse shaping in the mid infrared by difference-frequency mixing,�?? Appl. Phys. B 76, 467�??471 (2003).
    [CrossRef]
  14. F. Eickemeyer, R. A. Kaindl, M. Woerner, T. Elsaesser, and A. M. Weiner, �??Controlled shaping of ultrafast electric field transients in the mid-infrared spectral renge,�?? Opt. Lett. 25, 1472�??1474 (2000).
    [CrossRef]
  15. M. Hacker, R. Netz, M. Roth, G. Stobrawa, T. Feurer, and R. Sauerbrey, �??Frequency doubling of phase-modulated ultrashort laser pulses,�?? Appl. Phys. B 73, 273�??277 (2001).
    [CrossRef]
  16. M. Hacker, T. Feurer, R. Sauerbrey, T. Lucza, and G. Szabo, �??Programmable femtosecond laser pulses in the ultraviolet,�?? J. Opt. Soc. Am. B 18, 866�??871 (2001).
    [CrossRef]
  17. H. Wang, and A. M. Weiner, �??A femtosecond waveform transfer technique using type II second harmonic generation,�?? IEEE J. Quantum Electron. 40, 937�??945 (2004).
    [CrossRef]
  18. Y. Nabekawa and K. Midorikawa, �??Group-delay-dispersion-matched sum-frequency mixing for the indirect phase control of deep ultraviolet pulses in the sub-20fs regime,�?? Appl. Phys. B 78, 569�??581 (2004).
    [CrossRef]
  19. G. Szabo and Z. Bor, �??Frequency conversion of ultrashort pulses,�?? Appl. Phys. B 58, 237�??241 (1994).
    [CrossRef]
  20. V. D. Volosov, S. G. Karpenko, N. E. Kornienko, and V. L. Strizhevskii, �??Method for compensating the phase matching dispersion in nonlinear optics,�?? Sov. J. Quantum Electron. 4, 1090�??1098 (1975).
    [CrossRef]
  21. O. E. Martinez, �??Achromatic phase matching for second harmonic generation of femtosecond pulses,�?? IEEE J. Quantum Electron. 25, 2464�??2468 (1989).
    [CrossRef]
  22. T. Nakajima and K. Miyazaki, �??Spectrally compensated third harmonic generation using angular dispersers,�?? Opt. Commun. 163, 217�??222 (1999).
    [CrossRef]
  23. I. Z. Kozma, P. Baum, S. Lochbrunner, and E. Riedle, �??Widely tunable sub-30 fs ultraviolet pulses by chirped sum frequency mixing,�?? Opt. Express 11, 3110�??3115 (2003). <a href=" http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-23-3110">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-23-3110</a>
    [CrossRef] [PubMed]
  24. Y. Nabekawa, Y. Shimizu, and K. Midorikawa, �??Sub-20-fs terawatt-class laser system with a mirrorless regenerative amplifier and an adaptive phase controller,�?? Opt. Lett. 27, 1265�??1267 (2002).
    [CrossRef]
  25. Y. Nabekawa and K. Midorikawa, �??Broadband sum-frequency mixing for indirect phase control of UV pulses with a sub-20-fs TW-class Ti:sapphire laser system,�?? in Ultrafast Optics IV, F. Krausz, G. Korn, P. Corkum, and I. A. Walmsley, eds., vol. IV, pp. 395�??400 (Springer, New York, 2004).
  26. Y. Nabekawa and K. Midorikawa, �??High-order pulse front tilt caused by high-order angular dispersion,�?? Opt. Express 11, 3365�??3376 (2003). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-25-3365">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-25-3365</a>
    [CrossRef] [PubMed]
  27. K. Varjú, A. P. Kovács, G. Kurdi, and K. Osvay, �??High-precision measurement of angular dispersion in a CPA laser,�?? Appl. Phys. B [suppl.] 74, S259�??S263 (2002).
    [CrossRef]
  28. J.-K. Rhee, T. S. Sosnowski, T. B. Norris, J. A. Arns, and W. S. Colburn, �??Chirped-pulse amplification of 85-fs pulses at 250 kHz with third-order dispersion compensation by use of holographic transmission gratings,�?? Opt. Lett. 19, 1550�??1552 (1994).
    [CrossRef] [PubMed]
  29. P. Baum, S. Lochbrunner, and E. Riedle, �??Zero-additional-phase SPIDER: full characterization of visible and sub-20-fs ultraviolet pulses,�?? Opt. Lett. 29, 210�??212 (2004).
    [CrossRef] [PubMed]
  30. V. Bagnoud and F. Salin, �??Influence of optical quality on chirped-pulse amplification: characterization of a 150-nm-bandwidth stretcher,�?? J. Opt. Soc. Am. B 16, 188�??193 (1999).
    [CrossRef]

Appl. Phys. B

M. Hacker, G. Stobrawa, R. Sauerbrey, T. Buckup, M. Motzkus, M. Wildenhain, and A. Gehner, �??Micromirror SLM for femtosecond pulse shaping in the ultraviolet,�?? Appl. Phys. B 76, 711�??714 (2003).
[CrossRef]

P. Baum, S. Lochbrunner, and E. Riedle, �??Generation of tunable 7-fs ultraviolet pulses: achromatic phase matching and chirp management,�?? Appl. Phys. B 79, 1027�??1032 (2004).
[CrossRef]

M. Roth, M. Mehendale, A. Bartelt, and H. Rabitz, �??Acousto-optical shaping of ultraviolet femtosecond pulses,�?? Appl. Phys. B 80, 441�??444 (2005).
[CrossRef]

T.Witte, K. L. Kompa, and M. Motzkus, �??Femtosecond pulse shaping in the mid infrared by difference-frequency mixing,�?? Appl. Phys. B 76, 467�??471 (2003).
[CrossRef]

Y. Nabekawa and K. Midorikawa, �??Group-delay-dispersion-matched sum-frequency mixing for the indirect phase control of deep ultraviolet pulses in the sub-20fs regime,�?? Appl. Phys. B 78, 569�??581 (2004).
[CrossRef]

G. Szabo and Z. Bor, �??Frequency conversion of ultrashort pulses,�?? Appl. Phys. B 58, 237�??241 (1994).
[CrossRef]

M. Hacker, R. Netz, M. Roth, G. Stobrawa, T. Feurer, and R. Sauerbrey, �??Frequency doubling of phase-modulated ultrashort laser pulses,�?? Appl. Phys. B 73, 273�??277 (2001).
[CrossRef]

K. Varjú, A. P. Kovács, G. Kurdi, and K. Osvay, �??High-precision measurement of angular dispersion in a CPA laser,�?? Appl. Phys. B [suppl.] 74, S259�??S263 (2002).
[CrossRef]

IEEE J. Quantum Electron.

O. E. Martinez, �??Achromatic phase matching for second harmonic generation of femtosecond pulses,�?? IEEE J. Quantum Electron. 25, 2464�??2468 (1989).
[CrossRef]

H. Wang, and A. M. Weiner, �??A femtosecond waveform transfer technique using type II second harmonic generation,�?? IEEE J. Quantum Electron. 40, 937�??945 (2004).
[CrossRef]

C. Iaconis and I. A.Walmsley, �??Self-referencing spectral interferometry for measuring ultrashort optical pulses,�?? IEEE J. Quantum Electron. 35, 501�??509 (1999) .
[CrossRef]

J. Opt. Soc. Am. B

J. Opt. Soc. Am. B.

V. Bagnoud and F. Salin, �??Influence of optical quality on chirped-pulse amplification: characterization of a 150-nm-bandwidth stretcher,�?? J. Opt. Soc. Am. B 16, 188�??193 (1999).
[CrossRef]

Opt. Commun.

T. Nakajima and K. Miyazaki, �??Spectrally compensated third harmonic generation using angular dispersers,�?? Opt. Commun. 163, 217�??222 (1999).
[CrossRef]

Opt. Express

Opt. Lett

J.-K. Rhee, T. S. Sosnowski, T. B. Norris, J. A. Arns, and W. S. Colburn, �??Chirped-pulse amplification of 85-fs pulses at 250 kHz with third-order dispersion compensation by use of holographic transmission gratings,�?? Opt. Lett. 19, 1550�??1552 (1994).
[CrossRef] [PubMed]

Opt. Lett.

Optics Express

Y. Nabekawa and K. Midorikawa, �??High-order pulse front tilt caused by high-order angular dispersion,�?? Opt. Express 11, 3365�??3376 (2003). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-25-3365">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-25-3365</a>
[CrossRef] [PubMed]

Phys. Rev. Lett.

N. Dudovich, B. Dayan, S. M. Gallagher, and Y. Silberberg, �??Transform-limited pulses are not optimal for resonant multiphoton transition,�?? Phys. Rev. Lett. 86, 47�??50 (2001).
[CrossRef] [PubMed]

Rev. Sci. Instrum.

A. M. Weiner, �??Femtosecond pulse shaping using spatial light modulators,�?? Rev. Sci. Instrum. 71, 1929�??1960 (2000).
[CrossRef]

Sov. J. Quantum Electron.

V. D. Volosov, S. G. Karpenko, N. E. Kornienko, and V. L. Strizhevskii, �??Method for compensating the phase matching dispersion in nonlinear optics,�?? Sov. J. Quantum Electron. 4, 1090�??1098 (1975).
[CrossRef]

Ultrafast Optics IV

Y. Nabekawa and K. Midorikawa, �??Broadband sum-frequency mixing for indirect phase control of UV pulses with a sub-20-fs TW-class Ti:sapphire laser system,�?? in Ultrafast Optics IV, F. Krausz, G. Korn, P. Corkum, and I. A. Walmsley, eds., vol. IV, pp. 395�??400 (Springer, New York, 2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Schematic diagram of experimental setup.

Fig. 2.
Fig. 2.

Hybrid compensator for angular dispersion of generated UV pulse. QR: quartz rotator

Fig. 3.
Fig. 3.

Schematic of the interferometer for the measurement of the angular dispersion. Vertical fringes generated with this interferometer are spectrally resolved with a slit and a grating with a groove density of 2400 ℓ/mm and detected by a CCD camera.

Fig. 4.
Fig. 4.

Upper parts of both figures are the spectrally resolved figures for the measurement of the angular dispersion. (a) With the prism-only compensator. (b) With the hybrid compensator. Relative angles for the propagation directions in each spectral component resulting from these fringes are shown as filled circles in both figures. Solid curves are obtained from the ray-trace calculation described in ref. [26].

Fig. 5.
Fig. 5.

Measured spectrogram of deep UV pulse without prism pair for compensation of chirp.

Fig. 6.
Fig. 6.

SPIDER apparatus for measuring phase of UV pulse.

Fig. 7.
Fig. 7.

Measured interferograms (hatched areas) and spectral phases (solid curves). The measured phases (a) without phase control and (b) with the inverse of the phase distortion applied. Applied phases (dashed curves) are given by the equations (c) ϕ =cos{2π(ν - ν 0)/∆ν} and (d) ϕ =tanh{(ν - ν0)/∆ν′}, where ν 0=800THz, ∆v=10THz, ν0=805THz, and ∆ν′=1THz. Temporal profiles calculated from the spectrum and the measured/applied phases are also shown as solid/dashed curves in the insets.

Metrics