Abstract

A low-cost, versatile optical coupling structure featuring a monolithic integration of a polymeric waveguide, beam ducts, and end-reflectors has been designed, prototyped, and demonstrated to be capable of sustaining high misalignment errors whilst maintaining a reasonable coupling efficiency. The soft lithography fabrication process of this interconnection design allows for significant advantages over traditional designs in terms of misalignment tolerance, manufacture cost and speed, as well as 3-D integration capability.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. N. McArdle, M. Naruse, and M. Ishikawa, �??Optoelectronic parallel computing using optically interconnected pipelined processing arrays,�?? IEEE J. Sel. Top. Quantum Electron 5, 250-260 (1999).
    [CrossRef]
  2. Y. Ishii, S. Koike, Y. Arai, and Y. Ando, �??SMT-compatible optical�??I/O chip packaging for chip-level optical interconnects,�?? in Proceedings of IEEE Electronic Components Technology Conference, 2001, 870-875.
  3. D. Krabe and W. Scheel, �??Optical interconnection by hot embossing for module and PCB technology�??The EOCB approach,�?? in Proc. IEEE Electronic Components Technology Conf., 1999, 1164-1166.
  4. R. T. Chen, L. Lin, C. Choi, Y. J. Liu, B. Bihari, L. Wu, S. Tang, R.Wichman, B. Picor, M. K. Hibbs-Brenner, J. Bristow, and Y. S. Liu, �??Fully embedded board-level guided-wave optoelectronic interconnects,�?? in Proc. IEEE, 88, 780-793 (2000).
    [CrossRef]
  5. S. Lehmacher, A. Neyer, and F. Mederer, �??Polymer optical waveguides integrated in printed circuit boards,�?? in Proc. 27th Eur. Conf. Optical Communication (ECOC�??01), 3, 2001, 302-303.
  6. H. Schroder, J. Bauer, F. Ebling, and W. Scheel, �??Polymer optical interconnects for PCB polymers and adhesives in microelectronics and photonics,�?? in Proc. 1st Int. IEEE Conf., Oct. 2001, 337-343.
  7. M. Kicherer, F. Mederer, R. Jager, H. Unold, K. J. Ebeling, S. Lehmacher, A. Neyer, and E. Griese, �??Data transmission at 3-Gbit/s over intraboard polymer waveguides with GaAs VCSELs,�?? in Proc. 26th Eur. Conf. Optical Communication (ECOC�??01), 3, 2000, 289-290.
  8. E. Griese, �??A high-performance hybrid electrical-optical interconnection technology for high-speed electronic systems,�?? IEEE Trans. Adv. Package. 24, 373-383 (2001).
  9. Younan Xia and George M. Whitesides, �??SOFT LITHOGRAPHY,�?? Annu. Rev. Mater. Sci. 28, 153-184 (1998).
    [CrossRef]
  10. Y. Huang, G. T. Paloczi, J. Scheuer, and A. Yariv, "Soft lithography replication of polymeric microring optical resonators," Opt. Express 11, 2452-2458 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-20-2452">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-20-2452</a>.
    [CrossRef] [PubMed]
  11. B.S. Rho, M.H. Cho, H.S. Cho, S. Kang, H.-H. Park, S.-W. Ha, and B.-H. Rhee, �??Low-crosstalk and highefficiency optical interconnection using 45°-ended connection rods,�?? Electron. Lett. 40, 730-732 (2004).
    [CrossRef]

1st Int. IEEE Conf. 2001 (1)

H. Schroder, J. Bauer, F. Ebling, and W. Scheel, �??Polymer optical interconnects for PCB polymers and adhesives in microelectronics and photonics,�?? in Proc. 1st Int. IEEE Conf., Oct. 2001, 337-343.

26th Eur. Conf. Optical Communication 02 (1)

M. Kicherer, F. Mederer, R. Jager, H. Unold, K. J. Ebeling, S. Lehmacher, A. Neyer, and E. Griese, �??Data transmission at 3-Gbit/s over intraboard polymer waveguides with GaAs VCSELs,�?? in Proc. 26th Eur. Conf. Optical Communication (ECOC�??01), 3, 2000, 289-290.

Annu. Rev. Mater. Sci. (1)

Younan Xia and George M. Whitesides, �??SOFT LITHOGRAPHY,�?? Annu. Rev. Mater. Sci. 28, 153-184 (1998).
[CrossRef]

Electron. Lett. (1)

B.S. Rho, M.H. Cho, H.S. Cho, S. Kang, H.-H. Park, S.-W. Ha, and B.-H. Rhee, �??Low-crosstalk and highefficiency optical interconnection using 45°-ended connection rods,�?? Electron. Lett. 40, 730-732 (2004).
[CrossRef]

Eur. Conf. Optical Communication 2001 (1)

S. Lehmacher, A. Neyer, and F. Mederer, �??Polymer optical waveguides integrated in printed circuit boards,�?? in Proc. 27th Eur. Conf. Optical Communication (ECOC�??01), 3, 2001, 302-303.

IEEE Electron. Compon. Technol. 2001 (1)

Y. Ishii, S. Koike, Y. Arai, and Y. Ando, �??SMT-compatible optical�??I/O chip packaging for chip-level optical interconnects,�?? in Proceedings of IEEE Electronic Components Technology Conference, 2001, 870-875.

IEEE Elect. Comp. Techn. Conf. 1999 (1)

D. Krabe and W. Scheel, �??Optical interconnection by hot embossing for module and PCB technology�??The EOCB approach,�?? in Proc. IEEE Electronic Components Technology Conf., 1999, 1164-1166.

IEEE J. Sel. Top. Quantum Electron. (1)

N. McArdle, M. Naruse, and M. Ishikawa, �??Optoelectronic parallel computing using optically interconnected pipelined processing arrays,�?? IEEE J. Sel. Top. Quantum Electron 5, 250-260 (1999).
[CrossRef]

IEEE Trans. Adv. Package (1)

E. Griese, �??A high-performance hybrid electrical-optical interconnection technology for high-speed electronic systems,�?? IEEE Trans. Adv. Package. 24, 373-383 (2001).

Opt. Express (1)

Proc. IEEE 2000 (1)

R. T. Chen, L. Lin, C. Choi, Y. J. Liu, B. Bihari, L. Wu, S. Tang, R.Wichman, B. Picor, M. K. Hibbs-Brenner, J. Bristow, and Y. S. Liu, �??Fully embedded board-level guided-wave optoelectronic interconnects,�?? in Proc. IEEE, 88, 780-793 (2000).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Schematic of the proposed soft-lithography-based optical interconnection on a conventional PCB.

Fig. 2.
Fig. 2.

Schematic of the proposed design (type-III) in comparison with two previous designs.

Fig. 3.
Fig. 3.

Coupling efficiency as a function of beam duct length for differing dimensions of waveguide.

Fig. 4.
Fig. 4.

Ray tracing schematic of a portion of the interconnection structure with varying beam duct lengths of 3.5mm, 6mm, and 7.5mm.

Fig. 5.
Fig. 5.

Coupling efficiency as a function of misalignment error for three interconnection architectures.

Fig. 6.
Fig. 6.

Top: Photo of a fabricated uncladded prototype of the proposed polymeric coupling structure for an optical interconnection with a built-in beam duct, fabricated by soft lithography. It is placed on a conventional PCB; Center: A photo of the fabricated prototype in action, with the coupling turning the VCSEL output beam twice by 90° and casting the resulting beam onto a screen. This demonstrates beam folding and transmission at a low loss; Bottom: Photo of the prototype in action, guiding the beam in successfully traversing a curved path on the PCB at a low loss.

Fig. 7.
Fig. 7.

Simulated change in light pulses due to time delay of varying propagation modes.

Tables (1)

Tables Icon

Table 1. Specifications of optical components used in ZEMAX® ray trace and time delay simulations

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

P ( t ) = i ω ( θ i ) p [ t d ( θ i ) ]
ω ( θ i ) = A e 2 θ i 2 α 2

Metrics