Abstract

We have fabricated and tested planar reflectors exhibiting an omnidirectional stop band centered near 1750 nm wavelength. The reflectors are comprised of multiple layers of Ge33As12Se55 chalcogenide glass and polyamide-imide polymer. Glass layers were deposited by thermal evaporation and polymer layers were deposited by spin-casting. Thin film stacks of up to 13 layers showed good planarity and adhesion, which we attribute to the well-matched thermo-mechanical properties of the materials. The optical properties of the reflectors were tested in both transmission and reflection, and the results are in good agreement with theoretical predictions. Relatively low-temperature processing steps were employed, making these reflectors of interest for integrated optics.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. J. Winn, Y. Fink, S. Fan, J.D. Joannopoulos, �??Omnidirectional reflection from a one-dimensional photonic crystal,�?? Opt. Lett. 23, 1573-1575 (1998).
    [CrossRef]
  2. Y. Fink, J.N. Winn, S. Fan, C. Chen, J. Michel, J.D. Joannopoulos, E.L. Thomas, �??A dielectric omnidirectional reflector,�?? Science 282, 1679-1682 (1998).
    [CrossRef] [PubMed]
  3. S.-H. Kim, C.K. Hwangbo, �??Design of omnidirectional high reflectors with quarter-wave dielectric stacks for optical telecommunication bands,�?? Appl. Opt. 41, 3187-3192 (2002).
    [CrossRef] [PubMed]
  4. W.H. Southwell, �??Omnidirectional mirror design with quarter-wave dielectric stacks,�?? Appl. Opt. 38, 5464-5467 (1999).
    [CrossRef]
  5. D.N. Chigrin, A.V. Lavrinenko, D.A. Yarotsky, S.V. Gaponenko, �??All-dielectric one-dimensional periodic structures for total omnidirectional reflection and partial spontaneous emission control,�?? J. Lightwave Technol. 17, 2018-2024 (1999).
    [CrossRef]
  6. M. Deopura, C.K. Ullal, B. Temelkuran, Y. Fink, �??Dielectric omnidirectional visible reflector,�?? Opt. Lett. 26, 1197-1199 (2001).
    [CrossRef]
  7. K.M. Chen, A.W. Sparks, H.-C. Luan, D.R. Lim, K. Wada, L.C. Kimerling, �??SiO2/TiO2 omnidirectional reflector and microcavity resonator via the sol-gel method,�?? Appl. Phys. Lett. 75, 3805-3807 (1999).
    [CrossRef]
  8. H.-Y. Lee, H. Makino, T. Yao, A. Tanaka, �??Si-based omnidirectional reflector and transmission filter optimized at a wavelength of 1.55 µm,�?? Appl. Phys. Lett. 81, 4502-4504 (2002).
    [CrossRef]
  9. G.R. Hadley, J.G. Fleming, S.-Y. Lin, �??Bragg fiber design for linear polarization,�?? Opt. Lett. 29, 809-811 (2004).
    [CrossRef] [PubMed]
  10. Y. Yi, S. Akiyama, P. Bermel, X. Duan, L.C. Kimerling, �??On-chip Si-based Bragg cladding waveguide with high index contrast bilayers,�?? Opt. Express 12, 4775-4780 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-20-4775.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-20-4775.</a>
    [CrossRef] [PubMed]
  11. S.-S. Lo, M.-S. Wang, C.-C. Chen, �??Semiconductor hollow optical waveguides formed by omni-directional reflectors,�?? Opt. Express 12, 6589-6593 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-26-6589.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-26-6589.</a>
    [CrossRef] [PubMed]
  12. Y. Xu, W. Liang, A. Yariv, J.G. Fleming, S.-Y. Lin, �??Modal analysis of Bragg onion resonators,�?? Opt. Lett. 29, 424-426 (2004).
    [CrossRef] [PubMed]
  13. E. Bormashenko, R. Pogreb, S. Sutovski, M. Levin, �??Optical properties and infrared optics applications of composite films based on polyethylene and low-melting-point chalcogenide glass,�?? Opt. Eng. 41, 295-302 (2002).
    [CrossRef]
  14. B. Temelkuran, S.D. Hart, G. Benoit, J.D. Joannopoulos, Y. Fink, �??Wavelength-scalable hollow optical fibres with large photonics bandgaps for CO2 laser transmission,�?? Nature 420, 650-653 (2002).
    [CrossRef] [PubMed]
  15. K. Kuriki, O. Shapira, S.D. Hart, G. Benoit, Y. Kuriki, J.F. Viens, M. Bayindir, J.D. Joannopoulos, Y. Fink, �??Hollow multilayer photonic bandgap fibers for NIR applications,�?? Opt. Express 12, 1510-1517 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-8-1510.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-8-1510.</a>
    [CrossRef] [PubMed]
  16. N. Ponnampalam, R.G. DeCorby, H.T. Nguyen, P.K. Dwivedi, C.J. Haugen, J.N. McMullin, S.O. Kasap, �??Small core rib waveguides with embedded gratings in As2Se3 glass,�?? Opt. Express 12, 6270-6277 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-25-6270.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-25-6270.</a>
    [CrossRef] [PubMed]
  17. R.K. Watts, M. de Wit, W.C. Holton, �??Nonoxide chalcogenide glass films for integrated optics,�?? Appl. Opt. 13, 2329-2332, 1974.
    [CrossRef] [PubMed]
  18. Y. Ruan, R.A. Jarvis, A.V. Rode, S. Madden, B. Luther-Davies, �??Wavelength dispersion of Verdet constants in chalcogenide glasses for magneto-optical waveguide devices,�?? Opt. Comm., article in press (2005).
    [CrossRef]
  19. J.T. Gopinath, M. Soljacic, E.P. Ippen, V.N. Fuflyigin, W.A. King, M. Shurgalin, �??Third order nonlinearities in Ge-As-Se-based glasses for telecommunications applications,�?? J. Appl. Phys. 96, 6931-6933 (2004).
    [CrossRef]
  20. D. Freeman, S. Madden, B. Luther-Davies, �??Fabrication of planar photonic crystals in a chalcogenide glass using a focused ion beam,�?? Opt. Express 13, 3079-3086 (2005), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-8-3079.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-8-3079.</a>
    [CrossRef] [PubMed]
  21. �??Torlon polyamide-imide design guide�?? (Solvay Advanced Polymers), <a href="http://www.solvayadvancedpolymers.com/static/wma/pdf/9/9/7/TDG 2003.pdf">http://www.solvayadvancedpolymers.com/static/wma/pdf/9/9/7/TDG 2003.pdf</a>
  22. R.M. Bryce, H. Nguyen, P. Nakeeran, T. Clement, C. Haugen, R. Tykwinski, R.G. DeCorby, J.N. McMullin, �??Polyamide-imide polymer thin films for integrated optics,�?? Thin Sol. Films 458, 233-236 (2004).
    [CrossRef]
  23. W.J. Tropf, M.E. Thomas, T.J. Harris, �??Properties of crystals and glasses,�?? in OSA Handbook of Optics, vol. II, M. Bass, ed. (McGraw-Hill, New York, 1995), pp. 33.3-33.101.
  24. G. Lenz, S. Spalter, �??Chalcogenide glasses,�?? in Nonlinear Photonic Crystals, R.E. Slusher, B.J. Eggleton, eds. (Springer-Verlag, Berlin, 2003), pp. 255-267.

Appl. Opt. (3)

Appl. Phys. Lett. (2)

K.M. Chen, A.W. Sparks, H.-C. Luan, D.R. Lim, K. Wada, L.C. Kimerling, �??SiO2/TiO2 omnidirectional reflector and microcavity resonator via the sol-gel method,�?? Appl. Phys. Lett. 75, 3805-3807 (1999).
[CrossRef]

H.-Y. Lee, H. Makino, T. Yao, A. Tanaka, �??Si-based omnidirectional reflector and transmission filter optimized at a wavelength of 1.55 µm,�?? Appl. Phys. Lett. 81, 4502-4504 (2002).
[CrossRef]

Handbook of Optics, vol. II (1)

W.J. Tropf, M.E. Thomas, T.J. Harris, �??Properties of crystals and glasses,�?? in OSA Handbook of Optics, vol. II, M. Bass, ed. (McGraw-Hill, New York, 1995), pp. 33.3-33.101.

J. Appl. Phys. (1)

J.T. Gopinath, M. Soljacic, E.P. Ippen, V.N. Fuflyigin, W.A. King, M. Shurgalin, �??Third order nonlinearities in Ge-As-Se-based glasses for telecommunications applications,�?? J. Appl. Phys. 96, 6931-6933 (2004).
[CrossRef]

J. Lightwave Technol. (1)

Nature (1)

B. Temelkuran, S.D. Hart, G. Benoit, J.D. Joannopoulos, Y. Fink, �??Wavelength-scalable hollow optical fibres with large photonics bandgaps for CO2 laser transmission,�?? Nature 420, 650-653 (2002).
[CrossRef] [PubMed]

Nonlinear Photonic Crystals (1)

G. Lenz, S. Spalter, �??Chalcogenide glasses,�?? in Nonlinear Photonic Crystals, R.E. Slusher, B.J. Eggleton, eds. (Springer-Verlag, Berlin, 2003), pp. 255-267.

Opt. Eng. (1)

E. Bormashenko, R. Pogreb, S. Sutovski, M. Levin, �??Optical properties and infrared optics applications of composite films based on polyethylene and low-melting-point chalcogenide glass,�?? Opt. Eng. 41, 295-302 (2002).
[CrossRef]

Opt. Express (5)

K. Kuriki, O. Shapira, S.D. Hart, G. Benoit, Y. Kuriki, J.F. Viens, M. Bayindir, J.D. Joannopoulos, Y. Fink, �??Hollow multilayer photonic bandgap fibers for NIR applications,�?? Opt. Express 12, 1510-1517 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-8-1510.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-8-1510.</a>
[CrossRef] [PubMed]

N. Ponnampalam, R.G. DeCorby, H.T. Nguyen, P.K. Dwivedi, C.J. Haugen, J.N. McMullin, S.O. Kasap, �??Small core rib waveguides with embedded gratings in As2Se3 glass,�?? Opt. Express 12, 6270-6277 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-25-6270.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-25-6270.</a>
[CrossRef] [PubMed]

Y. Yi, S. Akiyama, P. Bermel, X. Duan, L.C. Kimerling, �??On-chip Si-based Bragg cladding waveguide with high index contrast bilayers,�?? Opt. Express 12, 4775-4780 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-20-4775.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-20-4775.</a>
[CrossRef] [PubMed]

S.-S. Lo, M.-S. Wang, C.-C. Chen, �??Semiconductor hollow optical waveguides formed by omni-directional reflectors,�?? Opt. Express 12, 6589-6593 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-26-6589.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-26-6589.</a>
[CrossRef] [PubMed]

D. Freeman, S. Madden, B. Luther-Davies, �??Fabrication of planar photonic crystals in a chalcogenide glass using a focused ion beam,�?? Opt. Express 13, 3079-3086 (2005), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-8-3079.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-8-3079.</a>
[CrossRef] [PubMed]

Opt. Lett. (4)

Science (1)

Y. Fink, J.N. Winn, S. Fan, C. Chen, J. Michel, J.D. Joannopoulos, E.L. Thomas, �??A dielectric omnidirectional reflector,�?? Science 282, 1679-1682 (1998).
[CrossRef] [PubMed]

Thin Sol. Films (1)

R.M. Bryce, H. Nguyen, P. Nakeeran, T. Clement, C. Haugen, R. Tykwinski, R.G. DeCorby, J.N. McMullin, �??Polyamide-imide polymer thin films for integrated optics,�?? Thin Sol. Films 458, 233-236 (2004).
[CrossRef]

Other (2)

�??Torlon polyamide-imide design guide�?? (Solvay Advanced Polymers), <a href="http://www.solvayadvancedpolymers.com/static/wma/pdf/9/9/7/TDG 2003.pdf">http://www.solvayadvancedpolymers.com/static/wma/pdf/9/9/7/TDG 2003.pdf</a>

Y. Ruan, R.A. Jarvis, A.V. Rode, S. Madden, B. Luther-Davies, �??Wavelength dispersion of Verdet constants in chalcogenide glasses for magneto-optical waveguide devices,�?? Opt. Comm., article in press (2005).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) SEM image of the cleaved facet of a multilayer stack of IG2 glass and PMMA polymer. The polymer layers deformed badly on cleaving, and there was clear loss of adhesion between layers. Inset: transmission scan of the PMMA-based multilayer, providing evidence of a stop band in the 1500 to 2200 nm wavelength range. (b) SEM image of the cleaved facet of a 5.5 period multilayer stack of IG2 glass and PAI polymer (starting and ending with polymer). The silicon substrate is visible at the bottom of the image. The wafer was cleaved after a brief immersion in liquid nitrogen.

Fig. 2.
Fig. 2.

(a) SEM image of a 6.5 period multilayer stack, starting and ending with a PAI polymer layer. (b) Surface relief map obtained by AFM in tapping mode over a 1 μm × 1 μm area.

Fig. 3.
Fig. 3.

(a) Transmission scan of the 6.5 period stack, obtained at nearly normal incidence with a spectrophotometer. (b) Refractive indices used in the simulations for IG2 glass (dashed) and PAI polymer (solid).

Fig. 4.
Fig. 4.

Simulated and experimentally measured reflectance versus wavelength, for TM (left panel) and TE (right panel) polarized light. For each polarization, plots are shown for incidence angles of 0, 20, 34, 48, 62, and 76 degrees from normal (in order from top to bottom). The simulated curves are shown as solid blue lines and the measured points are indicated by the red symbols. The gap in the measured data near 1400 nm is inherent to the instrument used. The simulated spectra are for IG2 and PAI layer thicknesses of 190 nm and 290 nm, respectively. The ellipsometry instrument does not allow normal incidence reflectance curves to be obtained.

Metrics