Abstract

Silicon prisms are used to couple free-space broadband terahertz into surface plasmon polariton (SPP) modes, otherwise known as surface electromagnetic waves (SEW) or Zenneck waves, on to polished metal surfaces. We show that coupling to surface waves occurs via edge-diffraction and hump-coupling and that attenuated total reflection is not an important coupling mechanism. Coupling and decoupling to a broadband, single-cycle SPP pulse is demonstrated with an energy efficiency of approximately 3.5%. Measurements of SPPs through thin plastic films reveal a strong surface sensitivity and suggest new configurations for maximizing THz SPP utility.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. H. M. Barlow, J. Brown, Radio Surface Waves (Clarendon Press, Oxford, 1962).
  2. R. J. Bell, M. Davarpanah, C. A. Goben, D. L. Begley, K. Bhasin, and R. W. Alexander, �??Measurements of standing waves and the absorption coefficients of various materials with surface electromagnetic waves on Al,�?? Appl. Opt. 14, 1579-1584 (1975).
    [CrossRef] [PubMed]
  3. J. Schoenwald, E. Burstein, and J. M. Elson, �??Propagation of surface polaritons over macroscopic distances at optical frequencies,�?? Solid State Commun. 12, 185-189 (1973).
    [CrossRef]
  4. Kanglin Wang, and Daniel M. Mittleman, �??Metal wires for terahertz wave guiding,�?? Nature 432, 376-379 (2004).
    [CrossRef] [PubMed]
  5. W. L. Barnes, A. Dereux, and T. W. Ebbesen, �??Surface plasmon subwavelength optics,�?? Nature 424, 824-830 (2003).
    [CrossRef] [PubMed]
  6. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, Berlin, 1988).
  7. R. Miller, D. Begley, and R. J. Bell, �??Surface electromagnetic wave coupling efficiency dependence on prism gap height,�?? Appl. Opt. 16, 3077-3079 (1977).
    [CrossRef]
  8. R. Miller, D. L. Begley, G. A. Ward, R. W. Alexander, and R. J. Bell, �??Propagation of surface electromagnetic waves on SrTiO3,�?? Surf. Sci. 71, 491-494 (1978).
    [CrossRef]
  9. D. L. Begley, R. W. Alexander, C. A. Ward, R. Miller, and R. J. Bell, �??Propagation distances of surface electromagnetic waves in the far infrared,�?? Surf. Sci. 81, 245-251 (1979).
    [CrossRef]
  10. John F. O�??Hara, R. D. Averitt, and A. J. Taylor, �??Terahertz surface plasmon polariton coupling on metallic gratings,�?? Opt. Express 12, 6397-6402 (2004).
    [CrossRef] [PubMed]
  11. John F. O�??Hara, R. D. Averitt, and A. J. Taylor, �??Terahertz surface plasmon polariton coupling via gratings and prisms,�?? in Optical Terahertz Science and Technology Topical Meeting on CD-ROM (The Optical Society of America, Washington DC, 2005), MB4.
  12. J. Saxler, J. Gómez-Rivas, C. Janke, H. P. M. Pellemans, P. Haring-Bolívar, and H. Kurz, �??Time-domain measurements of surface plasmon polaritons in the terahertz frequency range,�?? Phys. Rev. B 69, 155-427-1-4 (2004).
    [CrossRef]
  13. Dongxia Qu, D. Grischkowsky, and Weili Zhang, �??Terahertz transmission properties of thin, subwavelength metallic hole arrays,�?? Opt. Lett. 29, 896-898 (2004).
    [CrossRef] [PubMed]
  14. Hideki Hirori, Kumiko Yamashita, Masaya Nagai, and Koichiro Tanaka, �??Attenuated total reflection spectroscopy in time domain using terahertz coherent pulses,�?? Jpn. J. Appl. Phys. 43, L1287-L1289 (2004).
    [CrossRef]
  15. N. Katzenellenbogen and D. Grischkowsky, �??Efficient generation of 380 fs pulses of THz radiation by ultrafast laser pulse excitation of a biased metal-semiconductor interface,�?? Appl. Phys. Lett. 58, 222-224 (1991).
    [CrossRef]
  16. G. N. Zhizhin, M. A. Moskaleva, E. V. Shomina, and V. A. Yakovlev, �??Edge effects due to propagation of surface IR electromagnetic waves along a metal surface,�?? JETP Lett. 29, 486-489 (1979).
  17. M. Davarpanah, C. A. Goben, D. L. Begley, and S. L. Griffith, �??Surface electromagnetic wave coupling efficiencies for several excitation techniques,�?? Appl. Opt. 15, 3066-3072 (1976).
    [CrossRef] [PubMed]
  18. J. Van Rudd, Jon L. Johnson, and Daniel M. Mittleman, �??Cross-polarized angular emission patterns from lens-coupled terahertz antennas,�?? J. Opt. Soc. Am. B 18, 1524-1533 (2001).
    [CrossRef]
  19. R. Mendis and D. Grischkowsky, �??Plastic ribbon THz waveguides,�?? J. Appl. Phys. 88, 4449-4451 (2000).
    [CrossRef]
  20. G. H. Zhizhin, M. A. Moskalova, E. V. Shomina, and V. A. Yakovlev, �??Surface Electromagnetic Wave Propagation on Metal Surfaces,�?? in Surface Polaritons, V. M. Agronovich and D. L. Mills, eds. (North-Holland, Amsterdam, 1982), 93-144.
  21. H. M. Barlow and A. L. Cullen, �??Surface waves,�?? Proc. I.E.E. 100, 329-347 (1953).
  22. Jianming Dai, S. Coleman, and D. Grischkowsky, �??Planar THz quasioptics,�?? Appl. Phys. Lett. 85, 884-886 (2004).
    [CrossRef]
  23. R. J. Bell, C. A. Goben, M. Davarpanah, K. Bhasin, D. L. Begley, and A. C. Bauer, �??Two-dimensional optics with surface electromagnetic waves,�?? Appl. Opt. 14, 1322-1325 (1975).
    [CrossRef] [PubMed]
  24. H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, �??Two-dimensional optics with surface plasmon polaritons,�?? Appl. Phys. Lett. 81, 1762-1764 (2002).
    [CrossRef]

Appl. Opt.

Appl. Phys. Lett.

N. Katzenellenbogen and D. Grischkowsky, �??Efficient generation of 380 fs pulses of THz radiation by ultrafast laser pulse excitation of a biased metal-semiconductor interface,�?? Appl. Phys. Lett. 58, 222-224 (1991).
[CrossRef]

Jianming Dai, S. Coleman, and D. Grischkowsky, �??Planar THz quasioptics,�?? Appl. Phys. Lett. 85, 884-886 (2004).
[CrossRef]

H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, �??Two-dimensional optics with surface plasmon polaritons,�?? Appl. Phys. Lett. 81, 1762-1764 (2002).
[CrossRef]

J. Appl. Phys.

R. Mendis and D. Grischkowsky, �??Plastic ribbon THz waveguides,�?? J. Appl. Phys. 88, 4449-4451 (2000).
[CrossRef]

J. Opt. Soc. Am. B

JETP Lett.

G. N. Zhizhin, M. A. Moskaleva, E. V. Shomina, and V. A. Yakovlev, �??Edge effects due to propagation of surface IR electromagnetic waves along a metal surface,�?? JETP Lett. 29, 486-489 (1979).

Jpn. J. Appl. Phys.

Hideki Hirori, Kumiko Yamashita, Masaya Nagai, and Koichiro Tanaka, �??Attenuated total reflection spectroscopy in time domain using terahertz coherent pulses,�?? Jpn. J. Appl. Phys. 43, L1287-L1289 (2004).
[CrossRef]

Nature

Kanglin Wang, and Daniel M. Mittleman, �??Metal wires for terahertz wave guiding,�?? Nature 432, 376-379 (2004).
[CrossRef] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, �??Surface plasmon subwavelength optics,�?? Nature 424, 824-830 (2003).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Optical Terahertz Science and Technology

John F. O�??Hara, R. D. Averitt, and A. J. Taylor, �??Terahertz surface plasmon polariton coupling via gratings and prisms,�?? in Optical Terahertz Science and Technology Topical Meeting on CD-ROM (The Optical Society of America, Washington DC, 2005), MB4.

Phys. Rev. B

J. Saxler, J. Gómez-Rivas, C. Janke, H. P. M. Pellemans, P. Haring-Bolívar, and H. Kurz, �??Time-domain measurements of surface plasmon polaritons in the terahertz frequency range,�?? Phys. Rev. B 69, 155-427-1-4 (2004).
[CrossRef]

Proc. I.E.E.

H. M. Barlow and A. L. Cullen, �??Surface waves,�?? Proc. I.E.E. 100, 329-347 (1953).

Solid State Commun.

J. Schoenwald, E. Burstein, and J. M. Elson, �??Propagation of surface polaritons over macroscopic distances at optical frequencies,�?? Solid State Commun. 12, 185-189 (1973).
[CrossRef]

Surf. Sci.

R. Miller, D. L. Begley, G. A. Ward, R. W. Alexander, and R. J. Bell, �??Propagation of surface electromagnetic waves on SrTiO3,�?? Surf. Sci. 71, 491-494 (1978).
[CrossRef]

D. L. Begley, R. W. Alexander, C. A. Ward, R. Miller, and R. J. Bell, �??Propagation distances of surface electromagnetic waves in the far infrared,�?? Surf. Sci. 81, 245-251 (1979).
[CrossRef]

Surface Polaritons

G. H. Zhizhin, M. A. Moskalova, E. V. Shomina, and V. A. Yakovlev, �??Surface Electromagnetic Wave Propagation on Metal Surfaces,�?? in Surface Polaritons, V. M. Agronovich and D. L. Mills, eds. (North-Holland, Amsterdam, 1982), 93-144.

Other

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, Berlin, 1988).

H. M. Barlow, J. Brown, Radio Surface Waves (Clarendon Press, Oxford, 1962).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

THz prism coupling arrangements. Thick black lines indicate metal blocks. Thin black boxes represent tape samples adhered to guide surfaces. (a) flat brass guide, (b) humped copper guide, (c) truncated humped copper guide, (d) no-line-of-sight guide.

Fig. 2.
Fig. 2.

Prism SPP coupling data. Red waveforms represent bare guide measurements, black waveforms represent SPP measurements with tape sample adhered to guide. Blue waveform shows free-space reference with no SPP apparatus. Color-coded multipliers indicate amplitude scaling for plots. (a) and (c) are flat brass guide measurements, (b) and (d) are humped Cu guide measurements. Black and blue waveforms in (a) and (b) are shifted for visual clarity.

Fig. 3.
Fig. 3.

SPP prism coupling data. Red waveforms represent bare guide measurements. Black waveforms show measurements with tape applied to the hump apex. Blue and green waveforms show measurements with tape applied to sides of the hump. (a) measurements on humped Cu guide of Fig. 1b, (c) measurements of truncated Cu guide of Fig. 1c, (b) and (d) are the respective amplitude spectra of (a) and (c). Waveforms are shifted for visual clarity. Color-coded multipliers indicate amplitude scaling for plots.

Fig. 4.
Fig. 4.

Tape position dependence on no-line-of-sight Cu guide with fixed 8 mm prism-metal gaps. Green waveform (shifted -2.5 ps and -1.5nA), blue waveform (not shifted), and black waveform (shifted +5 ps and +3 nA) show surface wave measurements with tape at position ‘R’, position‘L’, and position ‘C’, respectively. Red waveform (shifted +2.5 ps and +1.5 nA) shows measurement with no tape sample.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

θ M = arcsin ( 1 n p ε m 1 + ε m )

Metrics