Abstract

Raman imaging can yield spatially resolved biochemical information from living cells. To date there have been no Raman images published of cells in suspension because of the problem of immobilising them suitably to acquire space-resolved spectra. In this paper in order to overcome this problem the use of holographic optical tweezers is proposed and implemented, and data is shown for spatially resolved Raman spectroscopy of a live cell in suspension.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. A. Ashkin, J. M. Dziedzic, and T. Yamane, �??Optical trapping and manipulation of single cells using infrared laser beams,�?? Nature (London) 330, 769�??771 (1987).
    [CrossRef] [PubMed]
  2. D. G. Grier, �??A revolution in optical manipulation,�?? Nature (London) 424, 810�??816 (2003).
    [CrossRef] [PubMed]
  3. K. O. Greutich, Micromanipulation by light in biology and medicine: The laser microbeam and optical tweezers (Birkhuser Verlag, Basel, Switzerland, 1999).
  4. M. Lankers, J. Popp, and W. Kiefer, �??Raman and fluorescence spectra of single optically trapped microdroplets in emulsion,�?? Appl. Spec. 48, 1166�??1168 (1994).
    [CrossRef]
  5. C. Xie, M. A. Dinno, and Y. Li, �??Near-infrared Raman spectroscopy of single optically trapped biological cells,�?? Opt. Lett. 27, 249�??251 (2002).
    [CrossRef]
  6. K. Ajito and K. Torimitsu, �??Laser trapping and Raman spectroscopy of single cellular organelles in the nanometer range,�?? Lab on a Chip 2, 11�??14 (2002).
    [CrossRef]
  7. C. M. Creely, G. P. Singh, and D. V. Petrov, �??Dual wavelength optical tweezers for confocal Raman spectroscopy,�?? Opt. Commun. 245, 465�??470 (2004).
    [CrossRef]
  8. G. P. Singh, C. M. Creely, G. Volpe, H. Grotsch, and D. V. Petrov, �??Real-time detection of hyperosmotic stress response in optically trapped single yeast cells using Raman microspectroscopy,�?? Anal. Chem. 77, 2564�??2568 (2005).
    [CrossRef] [PubMed]
  9. N. Uzunbajakava, A. Lenferink, Y. Kraan, B.Willekens, G. Vrensen, J. Greve, and C. Otto, �??Nonresonant Raman imaging of protein distribution in single human cells,�?? Biopolymers 72, 1�??9 (2003).
    [CrossRef]
  10. Y. Huang, T. Karashima, M. Yamamoto, T. Ogura, and H. Hamaguchi, �??Raman spectroscopic signature of life in a living yeast cell,�?? J. Ram. Spec. 35, 525�??526 (2004).
    [CrossRef]
  11. S. C. Grover, R. C. Gauthier, and A. G. Skirtach, �??Analysis of the behaviour of erythrocytes in an optical trapping system,�?? Opt. Express 7, 533�??539 (2000). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-7-13-533">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-7-13-533</a>.
    [CrossRef] [PubMed]
  12. G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, �??Computer-generated holographic optical tweezer arrays,�?? Rev. Sci. Instrumen. 72, 1810�??1816 (2001).
    [CrossRef]
  13. H. Melville, G. F. Milne, G. C. Spalding, W. Sibbett, K. Dholakia, and D. C. McGloin, �??Optical trapping of three-dimensional structures using dynamic holograms,�?? Opt. Express 11, 3562�??3567 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-26-3562">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-26-3562</a>.
    [CrossRef] [PubMed]
  14. A. Jesacher, S. Frhapter, S. Bernet, and M. Ritsch-Marte, �?? Size selective trapping with optical cogwheel tweezers,�?? Opt. Express 12, 4129�??4135 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-17-4129">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-17-4129</a>.
    [CrossRef] [PubMed]
  15. R. L. Eriksen, V. R. Daria, and J. Gl¨uckstad, �??Fully dynamic multiple-beam optical tweezers,�?? Opt. Express 10, 597�??602 (2002), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-14-597">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-14-597</a>.
    [PubMed]
  16. V. Emiliani, D. Sanvitto, M. Zahid, F. Gerbal, and M. Coppey-Moisan, �??Multi force optical tweezers to generate gradients of forces,�?? Opt. Express 12, 3906�??3910 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-17-3906">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-17-3906</a>.
    [CrossRef] [PubMed]
  17. G. Sinclair, P. Jordan, J. Courtial, M. Padgett, J. Cooper and Z. J. Laczik �??Assembly of 3-dimensional structures using programmable holographic optical tweezers,�?? Opt. Express 12, 5475�??5480 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-22-5475">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-22-5475</a>.
    [CrossRef] [PubMed]
  18. I. Notingher, I. Bisson, A. E. Bishop, W. L. Randle, J. M. P. Polak, and L. L. Hench, �??In situ spectral monitoring of mRNA translation in embryonic stem cells during differentiation in vitro,�?? Anal. Chem. 76, 3185�??3193 (2004).
    [CrossRef] [PubMed]
  19. V. Bingelyte, J. Leach, J. Courtial, and M. J. Padgett, �??Optically controlled three-dimensional rotation of microscopic objects,�?? Appl. Phys. Lett. 82, 829�??831 (2003).
    [CrossRef]

Anal. Chem.

G. P. Singh, C. M. Creely, G. Volpe, H. Grotsch, and D. V. Petrov, �??Real-time detection of hyperosmotic stress response in optically trapped single yeast cells using Raman microspectroscopy,�?? Anal. Chem. 77, 2564�??2568 (2005).
[CrossRef] [PubMed]

I. Notingher, I. Bisson, A. E. Bishop, W. L. Randle, J. M. P. Polak, and L. L. Hench, �??In situ spectral monitoring of mRNA translation in embryonic stem cells during differentiation in vitro,�?? Anal. Chem. 76, 3185�??3193 (2004).
[CrossRef] [PubMed]

Appl. Phys. Lett.

V. Bingelyte, J. Leach, J. Courtial, and M. J. Padgett, �??Optically controlled three-dimensional rotation of microscopic objects,�?? Appl. Phys. Lett. 82, 829�??831 (2003).
[CrossRef]

Appl. Spec.

M. Lankers, J. Popp, and W. Kiefer, �??Raman and fluorescence spectra of single optically trapped microdroplets in emulsion,�?? Appl. Spec. 48, 1166�??1168 (1994).
[CrossRef]

Biopolymers

N. Uzunbajakava, A. Lenferink, Y. Kraan, B.Willekens, G. Vrensen, J. Greve, and C. Otto, �??Nonresonant Raman imaging of protein distribution in single human cells,�?? Biopolymers 72, 1�??9 (2003).
[CrossRef]

J. Ram. Spec.

Y. Huang, T. Karashima, M. Yamamoto, T. Ogura, and H. Hamaguchi, �??Raman spectroscopic signature of life in a living yeast cell,�?? J. Ram. Spec. 35, 525�??526 (2004).
[CrossRef]

Lab on a Chip

K. Ajito and K. Torimitsu, �??Laser trapping and Raman spectroscopy of single cellular organelles in the nanometer range,�?? Lab on a Chip 2, 11�??14 (2002).
[CrossRef]

Nature (London)

A. Ashkin, J. M. Dziedzic, and T. Yamane, �??Optical trapping and manipulation of single cells using infrared laser beams,�?? Nature (London) 330, 769�??771 (1987).
[CrossRef] [PubMed]

D. G. Grier, �??A revolution in optical manipulation,�?? Nature (London) 424, 810�??816 (2003).
[CrossRef] [PubMed]

Opt. Commun.

C. M. Creely, G. P. Singh, and D. V. Petrov, �??Dual wavelength optical tweezers for confocal Raman spectroscopy,�?? Opt. Commun. 245, 465�??470 (2004).
[CrossRef]

Opt. Express

H. Melville, G. F. Milne, G. C. Spalding, W. Sibbett, K. Dholakia, and D. C. McGloin, �??Optical trapping of three-dimensional structures using dynamic holograms,�?? Opt. Express 11, 3562�??3567 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-26-3562">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-26-3562</a>.
[CrossRef] [PubMed]

A. Jesacher, S. Frhapter, S. Bernet, and M. Ritsch-Marte, �?? Size selective trapping with optical cogwheel tweezers,�?? Opt. Express 12, 4129�??4135 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-17-4129">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-17-4129</a>.
[CrossRef] [PubMed]

R. L. Eriksen, V. R. Daria, and J. Gl¨uckstad, �??Fully dynamic multiple-beam optical tweezers,�?? Opt. Express 10, 597�??602 (2002), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-14-597">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-14-597</a>.
[PubMed]

V. Emiliani, D. Sanvitto, M. Zahid, F. Gerbal, and M. Coppey-Moisan, �??Multi force optical tweezers to generate gradients of forces,�?? Opt. Express 12, 3906�??3910 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-17-3906">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-17-3906</a>.
[CrossRef] [PubMed]

G. Sinclair, P. Jordan, J. Courtial, M. Padgett, J. Cooper and Z. J. Laczik �??Assembly of 3-dimensional structures using programmable holographic optical tweezers,�?? Opt. Express 12, 5475�??5480 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-22-5475">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-22-5475</a>.
[CrossRef] [PubMed]

S. C. Grover, R. C. Gauthier, and A. G. Skirtach, �??Analysis of the behaviour of erythrocytes in an optical trapping system,�?? Opt. Express 7, 533�??539 (2000). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-7-13-533">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-7-13-533</a>.
[CrossRef] [PubMed]

Opt. Lett.

Rev. Sci. Instrumen.

G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, �??Computer-generated holographic optical tweezer arrays,�?? Rev. Sci. Instrumen. 72, 1810�??1816 (2001).
[CrossRef]

Other

K. O. Greutich, Micromanipulation by light in biology and medicine: The laser microbeam and optical tweezers (Birkhuser Verlag, Basel, Switzerland, 1999).

Supplementary Material (3)

» Media 1: MPG (1998 KB)     
» Media 2: MPG (1646 KB)     
» Media 3: MPG (2248 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Frame from a movie showing trapping of a dividing yeast cell (1.95 MB). There is a large movement relative to the trapping point.

Fig. 2.
Fig. 2.

Set up for HOT combined with Raman spectroscopy (a). A more detailed view of the SLM arrangement (b) and some examples of holograms used to produce one (c) and four (d) trapping points respectively at the focal plane.

Fig. 3.
Fig. 3.

(a) Still from a movie showing one and four beams created and moved by SLM control (1.6 MB). (b) Still from movie where Jurkat cell is being moved by HOT (2.19 MB)

Fig. 4.
Fig. 4.

(a) shows spectra from this cell acquired for 60 s inside the cell (black) and outside (grey) compared with spectrum from a cell imaged on the surface (red) with 15 s acquisition. Raman images of single floating Jurkat cell with different bands imaged (b) and (c). Each step was 3 μm.

Metrics