Abstract

We demonstrate an all-optical tunable pulse delay scheme that utilizes the power-dependent variation of the refractive index that accompanies stimulated Raman scattering in an optical fiber. Using this technique, we delay 430-fs pulses by up to 85% of a pulse width. The ability to accommodate the bandwidth of pulses shorter than 1 ps in a fiber-based system makes this technique potentially viable for producing controllable delays in ultra-high bandwidth telecommunication systems.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. M. D. Stenner, D. J. Gauthier, and M. A. Neifeld, �??The speed of information in a �??fast-light�?? optical medium,�?? Nature 425, 695�??698 (2003).
    [CrossRef] [PubMed]
  2. R.W. Boyd and D. J. Gauthier, �??Slow and fast light,�?? Progress in Optics 43, edited by E.Wolf, 497�??529, (Elsevier, Amsterdam, 2002).
    [CrossRef]
  3. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, �??Light speed reduction to 17 metres per second in an ultracold atomic gas,�?? Nature 397, 594�??598 (1999).
    [CrossRef]
  4. M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R.Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, �??Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,�?? Phys. Rev. Lett. 82, 5229�??5232 (1999).
    [CrossRef]
  5. C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, �??Observation of coherent optical information storage in an atomic medium using halted light pulses,�?? Nature 409, 490�??493 (2001).
    [CrossRef] [PubMed]
  6. L. J. Wang, A. Kuzmich, A. Dogariu, �??Gain-assisted superluminal light propagation,�?? Nature 406, 277�??279 (2000).
    [CrossRef] [PubMed]
  7. M. S. Bigelow MS, N. N. Lepeshkin, R. W. Boyd, �??Superluminal and slow light propagation in a room-temperature solid,�?? Science 301, 200�??202 (2003).
    [CrossRef] [PubMed]
  8. Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, �??Tunable all-optical delays via Brillouin slow light in an optical fiber,�?? Phys. Rev. Lett. 94, 153902 (2005).
    [CrossRef] [PubMed]
  9. S. Ghosh, J. E. Sharping, D. G. Ouzounov, and A. L. Gaeta, �??Resonant optical interactions with molecules confined in photonic band-gap fibers,�?? Phys. Rev. Lett. 94, 093902 (2005).
    [CrossRef] [PubMed]
  10. J. E. Sharping, Y. Okawachi, J. van Howe, C. Xu and A. L. Gaeta, �??All-optical tunable, nanosecond delay using wavelength conversion and fiber dispersion,�?? in proceedings of CLEO�??05, paper CTuT1 (2005).
  11. Z. Zhu, D. J. Gauthier, Y. Okawachi, J. E. Sharping, A. L. Gaeta, R. W. Boyd, and A. E. Willner, �??Numerical study of all-optical slow-light delays via stimulated Brillouin scattering in an optical fiber,�?? to be published in J. Opt. Soc. Am. B (2005).
  12. K. Y. Song, M. G. Herráez, L. Thévenaz, �??Observation of pulse delaying and advancement in optical fibers using stimulated Brillouin scattering,�?? Opt. Express 13, 82�??88 (2005).
    [CrossRef] [PubMed]
  13. K. Y. Song, M. G. Herráez, L. Thévenaz, �??Long optically controlled delays in optical fibers,�?? Opt. Lett. 30, 1782�??1784 (2005).
    [CrossRef] [PubMed]
  14. P. L. Voss and P. Kumar, �??Raman-effect induced noise limits on �?(3) parametric amplifiers and wavelength converters,�?? J. Opt. B: Quantum Semiclass. Opt. 6, S762�??S770 (2004).
    [CrossRef]
  15. F. A. Oguama, H. Garcia, and A. M. Johnson, �??Simultaneous measurement of the Raman gain coefficient and the nonlinear refractive index of optical fibers: theory and experiment,�?? J. Opt. Soc. Am. B 22, 426�??436 (2005).
    [CrossRef]
  16. K. Lee and N. M. Lawandy, �??Optically induced pulse delay in a solid-state Raman amplifier,�?? Appl. Phys. Lett. 78, 703�??705 (2001).
    [CrossRef]
  17. R.W. Boyd, D. J. Gauthier, A. L. Gaeta, A. E.Willner, �??Maximum time delay achievable on propagation through a slow-light medium,�?? Phys. Rev. A 71, 023801 (2005).
    [CrossRef]
  18. R. H. Stolen, J. P. Gordon, W. J. Tomlinson, and H. A. Haus, �??Raman response function of silica-core fibers,�?? J. Opt. Soc. Am. B 6, 1159�??1166 (1989).
    [CrossRef]
  19. L. Lepetit, G. Cheriaux, M. Joffre, �??Linear techniques of phase measurement by femtosecond spectral interferometry for applications in spectroscopy,�?? J. Opt. Soc. Am. B 12, 2467�??2474 (1995).
    [CrossRef]
  20. L. Brillouin, Wave propagation and group velocity (Academic Press, New York, 1960).

Appl. Phys. Lett.

K. Lee and N. M. Lawandy, �??Optically induced pulse delay in a solid-state Raman amplifier,�?? Appl. Phys. Lett. 78, 703�??705 (2001).
[CrossRef]

CLEO 2005

J. E. Sharping, Y. Okawachi, J. van Howe, C. Xu and A. L. Gaeta, �??All-optical tunable, nanosecond delay using wavelength conversion and fiber dispersion,�?? in proceedings of CLEO�??05, paper CTuT1 (2005).

J. Opt. B: Quantum Semiclass. Opt.

P. L. Voss and P. Kumar, �??Raman-effect induced noise limits on �?(3) parametric amplifiers and wavelength converters,�?? J. Opt. B: Quantum Semiclass. Opt. 6, S762�??S770 (2004).
[CrossRef]

J. Opt. Soc. Am. B

Nature

M. D. Stenner, D. J. Gauthier, and M. A. Neifeld, �??The speed of information in a �??fast-light�?? optical medium,�?? Nature 425, 695�??698 (2003).
[CrossRef] [PubMed]

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, �??Light speed reduction to 17 metres per second in an ultracold atomic gas,�?? Nature 397, 594�??598 (1999).
[CrossRef]

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, �??Observation of coherent optical information storage in an atomic medium using halted light pulses,�?? Nature 409, 490�??493 (2001).
[CrossRef] [PubMed]

L. J. Wang, A. Kuzmich, A. Dogariu, �??Gain-assisted superluminal light propagation,�?? Nature 406, 277�??279 (2000).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Phys. Rev. A

R.W. Boyd, D. J. Gauthier, A. L. Gaeta, A. E.Willner, �??Maximum time delay achievable on propagation through a slow-light medium,�?? Phys. Rev. A 71, 023801 (2005).
[CrossRef]

Phys. Rev. Lett.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, �??Tunable all-optical delays via Brillouin slow light in an optical fiber,�?? Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

S. Ghosh, J. E. Sharping, D. G. Ouzounov, and A. L. Gaeta, �??Resonant optical interactions with molecules confined in photonic band-gap fibers,�?? Phys. Rev. Lett. 94, 093902 (2005).
[CrossRef] [PubMed]

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R.Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, �??Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,�?? Phys. Rev. Lett. 82, 5229�??5232 (1999).
[CrossRef]

Progress in Optics

R.W. Boyd and D. J. Gauthier, �??Slow and fast light,�?? Progress in Optics 43, edited by E.Wolf, 497�??529, (Elsevier, Amsterdam, 2002).
[CrossRef]

Science

M. S. Bigelow MS, N. N. Lepeshkin, R. W. Boyd, �??Superluminal and slow light propagation in a room-temperature solid,�?? Science 301, 200�??202 (2003).
[CrossRef] [PubMed]

Other

L. Brillouin, Wave propagation and group velocity (Academic Press, New York, 1960).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

The experimental setup used to demonstrate slow light in a Raman fiber amplifier (det, detector; FPC, fiber-polarization conroller; other abbreviations are described in the text). The reference pulse is used for the FTSI measurement of the signal delay.

Fig. 2.
Fig. 2.

(a) Plots of gain versus pump peak power for several different signal wavelengths. (b) Gain slope versus signal-pump frequency detuning. The measured slopes plotted on the left axis are compared with the ASE spectrum which is plotted on the right axis.

Fig. 3.
Fig. 3.

(a) Spectral interferograms along with the (b) Fourier-transformed pulse position.

Fig. 4.
Fig. 4.

Plots of gain and delay vs. pump power.

Fig. 5.
Fig. 5.

Amplitude of the transformed interferograms for pulse delay changes of 0 fs, 135 fs and 370 fs. The delay of 370 fs is the maximum delay achieved with our setup.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Δ T = G Γ ,
S ( ω ) = E 0 ( ω ) + E a ( ω ) 2
= E 0 ( ω ) 2 + E a ( ω ) 2 + 2 E 0 ( ω ) E a ( ω ) cos ( ϕ a ϕ 0 ) ,

Metrics