Abstract

We present a programmable beam-shaping method based on the combination of a deformable mirror membrane mirror and a simulated annealing algorithm. The algorithm iteratively adjusts the control voltages of 37 independent electrodes to reduce the variance between the chosen shape and the actual beam shape. The experimental results show that the system is capable of adaptively creating, on demand, Gaussian and super-Gaussian beam profiles that closely match the desired target parameters.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. A. Weiner, D. E. Leaird, J. S. Patal, J. R. Wullert, �??Programmable shaping of femtosecond optical pulses by using of 128-element liquid crystal phase modulator, �?? IEEE J. Quantum Electron. 28, 908-920 (1992).
    [CrossRef]
  2. D. Dayton, S. Restaino, J. Gonglewski, J. Gallegos, S. McDermott, S. Browne, S. Rogers, M. Vaidyanathan, M. Shilko, �??Laboratory and field demonstration of a low cost membrane mirror adaptive optics system,�?? Opt. Commun. 176, 339-345 (2000).
    [CrossRef]
  3. R. B. Shake and B. C. Platt, �??Production and use of a lenticular Hartmann screen,�?? J. Opt. Soc. Am. 61, 656 (1971).
  4. K. H. Kudielka, Y. Hayano, W. Klaus, K. Araki, Y. Arimoto, J. Uchida, �??Low-order adaptive optics system for free-space lasercom: design and performance analysis,�?? Proc. 2 nd International workshop on adaptive optics for industry and medicine, Singapore pp. 364-9. (2000).
  5. W. H. Press, S. A Teukolsky, W. T. Vetterling, B. P. Flannery, �??Numerical Recipes,�?? 2nd ed (Cambridge: Cambridge University Press, UK, 1997).
  6. E. Zeek, R. Bartels, M. M. Murnane, H. C. Kapteyn, S. Backus, G. Vdovin �??Adaptive pulse compensation for transform-limited 15-fs high-energy pulse generation,�?? Opt. Lett. 25, 587-589 (2000).
    [CrossRef]
  7. O. Albert, L. Sherman, G. Mourou, T. B. Norris, G.Vdovin, �??Smart microscope: an adaptive optics learning system for aberration correction in multiphonon confocal microscopy,�?? Opt. Lett. 25, 52-54 (2000).
    [CrossRef]
  8. W. Lubeigt, G. Valentine, J. Girkin, E. Bente, D. Burns, �??Active transverse mode control and optimization of an all-solid-state laser using an intracavity adaptive-optic mirror,�?? Opt. Express. 10, 550-551 (2002).
    [PubMed]
  9. Flexible Optical B. V., PO Box 581, 2600 AN, Delft, the Netherlands, <a href="http://www.okotech.com.">http://www.okotech.com.</a>
  10. Basler camera model A302f, <a href="http://www.basler-vc.com.">http://www.basler-vc.com.</a>

2 nd International workshop (1)

K. H. Kudielka, Y. Hayano, W. Klaus, K. Araki, Y. Arimoto, J. Uchida, �??Low-order adaptive optics system for free-space lasercom: design and performance analysis,�?? Proc. 2 nd International workshop on adaptive optics for industry and medicine, Singapore pp. 364-9. (2000).

IEEE J. Quantum Electron. (1)

A. Weiner, D. E. Leaird, J. S. Patal, J. R. Wullert, �??Programmable shaping of femtosecond optical pulses by using of 128-element liquid crystal phase modulator, �?? IEEE J. Quantum Electron. 28, 908-920 (1992).
[CrossRef]

J. Opt. Soc. Am. (1)

R. B. Shake and B. C. Platt, �??Production and use of a lenticular Hartmann screen,�?? J. Opt. Soc. Am. 61, 656 (1971).

Opt. Commun. (1)

D. Dayton, S. Restaino, J. Gonglewski, J. Gallegos, S. McDermott, S. Browne, S. Rogers, M. Vaidyanathan, M. Shilko, �??Laboratory and field demonstration of a low cost membrane mirror adaptive optics system,�?? Opt. Commun. 176, 339-345 (2000).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Other (3)

Flexible Optical B. V., PO Box 581, 2600 AN, Delft, the Netherlands, <a href="http://www.okotech.com.">http://www.okotech.com.</a>

Basler camera model A302f, <a href="http://www.basler-vc.com.">http://www.basler-vc.com.</a>

W. H. Press, S. A Teukolsky, W. T. Vetterling, B. P. Flannery, �??Numerical Recipes,�?? 2nd ed (Cambridge: Cambridge University Press, UK, 1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Experimental configuration of the beam-shaping system showing the feedback loop formed by the deformable mirror, the camera and the control computer.

Fig 2.
Fig 2.

Schematic representation of the simulated annealing beam-shaping algorithm

Fig. 3.
Fig. 3.

Beam shaping results based on three different Gaussian target profiles (see Table 1). Row 1: target profiles; Row 2: experimentally obtained beam profiles; Row 3: horizontal cross-section through the centre of the camera image (solid line) and comparison with a cross-section through the target profile (symbols); Row 4: evolution of the RMS error during algorithm execution.

Fig. 4.
Fig. 4.

Measured beam profile produced by the initial voltage set and used as the starting condition in all cases

Fig. 5.
Fig. 5.

Beam shaping results based on three different super-Gaussian target profiles (see Table 1). For layout description, see Fig. 3 caption.

Tables (1)

Tables Icon

Table 1. Parameters of the Gaussian and super-Gaussian target beams focused at the camera plane

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

I target ( x , y ) = exp ( ( a ( x x o ) ) 2 p ( b ( y y o ) ) 2 q )
e k = x y ( I target ( x , y ) I camera ( x , y ) ) 2
P = exp ( Δ e k T )

Metrics