Abstract

Raman gain spectral profile has been measured in a phosphosilicate fiber at high pump and Stokes (signal) wave powers. It has been shown that the profile saturates homogeneously. The main saturation mechanism is proved to be the pump depletion, i.e., Raman gain coefficient gR does not depend on the pump and signal wave power up to the level of ~3 W.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. S. Namiki and Y. Emory,�??Ultrabroad-band Raman amplifiers pumped and gain-qualized by wavelength-division-multiplexed high-power laser diodes�??, IEEE J. Sel. Top. Quantum Elecrton. 7, 3�??16 (2001).
    [CrossRef]
  2. M.D. Mermelstein, C. Headley, J.-C. Bouteiller, P. Steinvurzel, C. Horn, K. Feder, and B.G. Eggleton, �??Configurable three-wavelength Raman fiber laser for Raman amplification and dynamic gain flattening,�?? IEEE Photonics Technol. Lett. 13 1286�??1288 (2001).
    [CrossRef]
  3. M. Bolshtyansky, �??Spectral hole burning in erbium-doped fiber amplifiers,�?? J. Lightwave Technol. 21, 1032�??1038 (2003).
    [CrossRef]
  4. D.G. Dugg et al., �??Impact of spectral hole burning on long haul WDM transmission system performance,�?? Optical Amplifiers and Their Applications 2001, paper OMD2 (2001).
  5. G. E. Walrafen and P. N. Krishnan, �??Model analysis of the Raman spectrum from fused silica optical fibers,�?? Appl. Opt. 21, 359�??360 (1982).
    [CrossRef] [PubMed]
  6. D. Hollenbeck and C. D. Cantrell, �??Multiple-vibrational-mode model for fiber-optic Raman gain spectrum and response function,�?? J. Opt. Soc. Am. B 19, 2886�??2892 (2002).
    [CrossRef]
  7. Y. Takushima and K. Kikuchi, �??Spectral gain hole burning and modulation instability in a Brillouin fiber amplifier,�?? Opt. Lett. 20, 34�??36 (1995).
    [CrossRef] [PubMed]
  8. Govind P. Agrawal, Fiber-Optic Communication Systems, (Jonn Willey and Sons, inc., 1997), chap. 8.
  9. S.A. Babin, D.V. Churkin, E.V. Podivilov,�??Intensity interactions in cascades of a two-stage Raman fiber laser,�?? Opt. Commun. 226, 329�??335 (2003); S.A. Babin, D.V. Churkin, E.V. Podivilov, A.S. Kurkov �??Spectral broadening and intensity interactions in cascades of a Raman fiber laser: analytical model and experimental test,�?? Optical Fiber Communication Conference 2004, paper WB6 (2004).
    [CrossRef]
  10. K. Suzuki and M. Nakazawa, �??Raman amplification in a P2O5-doped optical fiber,�?? Opt. Lett. 13, 666�??668 (1988).
    [CrossRef] [PubMed]
  11. N. R. Newbury, �??Raman gain: pump-wavelength dependence in single-mode fiber,�?? Opt. Lett. 27(14), 1232�??1234 (2002).
    [CrossRef]
  12. E. M. Dianov, M. V. Grekov, I. A. Bufetov, S. A. Vasiliev, O. I. Medvedkov, V. G. Plotnichenko, V. V. Koltashev, A. V. Belov, M. M. Bubnov, S. L. Semjonov and A. M. Prokhorov, �??CW high power 1.24 µm and 1.48 µm Raman lasers based on low loss phosphosilicate fibre,�?? Electron. Lett. 33, 1542�??1544 (1997).
    [CrossRef]
  13. J. Auyeung, A. Yariv, �??Theory of CW Raman oscillation in optical fibers�??, J. Opt. Soc. Am. 69, 803�??807 (1979)
    [CrossRef]

Appl. Opt. (1)

Electron. Lett. (1)

E. M. Dianov, M. V. Grekov, I. A. Bufetov, S. A. Vasiliev, O. I. Medvedkov, V. G. Plotnichenko, V. V. Koltashev, A. V. Belov, M. M. Bubnov, S. L. Semjonov and A. M. Prokhorov, �??CW high power 1.24 µm and 1.48 µm Raman lasers based on low loss phosphosilicate fibre,�?? Electron. Lett. 33, 1542�??1544 (1997).
[CrossRef]

IEEE J. Sel. Top. Quantum Elecrton. (1)

S. Namiki and Y. Emory,�??Ultrabroad-band Raman amplifiers pumped and gain-qualized by wavelength-division-multiplexed high-power laser diodes�??, IEEE J. Sel. Top. Quantum Elecrton. 7, 3�??16 (2001).
[CrossRef]

IEEE Photonics Technol. Lett. (1)

M.D. Mermelstein, C. Headley, J.-C. Bouteiller, P. Steinvurzel, C. Horn, K. Feder, and B.G. Eggleton, �??Configurable three-wavelength Raman fiber laser for Raman amplification and dynamic gain flattening,�?? IEEE Photonics Technol. Lett. 13 1286�??1288 (2001).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am (1)

J. Auyeung, A. Yariv, �??Theory of CW Raman oscillation in optical fibers�??, J. Opt. Soc. Am. 69, 803�??807 (1979)
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

S.A. Babin, D.V. Churkin, E.V. Podivilov,�??Intensity interactions in cascades of a two-stage Raman fiber laser,�?? Opt. Commun. 226, 329�??335 (2003); S.A. Babin, D.V. Churkin, E.V. Podivilov, A.S. Kurkov �??Spectral broadening and intensity interactions in cascades of a Raman fiber laser: analytical model and experimental test,�?? Optical Fiber Communication Conference 2004, paper WB6 (2004).
[CrossRef]

Opt. Lett. (3)

Optical Amplifiers and Their Application (1)

D.G. Dugg et al., �??Impact of spectral hole burning on long haul WDM transmission system performance,�?? Optical Amplifiers and Their Applications 2001, paper OMD2 (2001).

Other (1)

Govind P. Agrawal, Fiber-Optic Communication Systems, (Jonn Willey and Sons, inc., 1997), chap. 8.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

CARS scheme: ωp , ωs and ωas are pump, Stokes and anti-Stokes frequencies.

Fig. 2.
Fig. 2.

Experimental setup.

Fig. 3.
Fig. 3.

Raman gain spectral profile (attributed to P 205 peak) tested by CARS technique at different pump power P 0 and intra-cavity Stokes wave power Ps .

Fig. 4.
Fig. 4.

Intracavity Stokes wave power Ps versus input pump power P 0.

Fig. 5.
Fig. 5.

Integral Raman gain gsL measured at the presence (boxes) and at the absence (stars) of the Stokes wave, solid and dashed lines are the results of calculation from Eq. (4).

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

g s = g R P p ¯ , P p ¯ = 1 L 0 L P p ( P s , z ) dz ,
± d P p ± dz = ( α p + λ s λ p g R P s ) P p ± ,
d P as dz = ( α as + A g R P p ) P as ,
P p + ( z ) = P p + ( 0 ) exp [ ( α p + λ s λ p g R P s ) z ] ,
P p ( z ) = P p ( L ) exp [ ( α p + λ s λ p g R P s ) ( z L ) ] .
P p ¯ = P 0 1 exp [ ( α p + λ s λ p g R P s ) 2 L ] α p + λ s λ p g R P s
P as ( 0 ) = P as ( L ) e δL , δ = α as + A g R P p ¯ .

Metrics