Abstract

We propose a method for increasing the resolution of an aperture limited optical system by illuminating the input with a speckle pattern. The high resolution of the projected speckle pattern demodulates the high frequencies of the sample and permits its passage through the system aperture. A decoding provides the superresolved image. The speckle pattern can be generated in a simple manner in contrast with other structured light superresolution methods. The method is demonstrated in microscopy test images.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. G. Toraldo di Francia, �??Resolving power and information,�?? J. Opt. Soc. Am. 45, 497-501 (1955).
    [CrossRef]
  2. W. Lukosz, �??Optical sytems with resolving powers exceeding the classical limits.�?? J. Opt. Soc. Am. 56, 1463-1472 (1967).
    [CrossRef]
  3. W. Lukosz, �??Optical sytems with resolving powers exceeding the classical limits. II�?? J. Opt. Soc. Am. 57, 932-941 (1967).
    [CrossRef]
  4. I. J. Cox and C. J. R. Sheppard, �??Information capacity and resolution in an optical system,�?? J. Opt. Soc. Am. A 3, 1152-1158 (1986).
    [CrossRef]
  5. A. J. den Dekker, A. van den Bos, �??Resolution: a survey,�?? J. Opt. Soc. Am. A 14, 547-557 (1997).
    [CrossRef]
  6. M. A. Grimm and A. W. Lohmann, �??Superresolution image for one-dimensional object�?? J. Opt. Soc. Am. 56, 1151-1156 (1966).
    [CrossRef]
  7. A. W. Lohmann and D. P. Paris, �??Superresolution for nonbirefringent objects,�?? Appl. Opt. 3, 1037-1043 (1964).
    [CrossRef]
  8. R. W. Gerchberg, �??Superresolution through error energy reduction,�?? Optica Acta 21, 709-720 (1974).
    [CrossRef]
  9. A. M. Tai, �??Two-dimensional image transmission through a single optical fiber by wavelength-time multiplexing,�?? Appl. Opt. 22 , 3826-3832 ( 1983 ).
    [CrossRef] [PubMed]
  10. D. Mendlovic, J. Garcia, Z. Zalevsky, E. Marom, D. Mas, C. Ferreira, and A. W. Lohmann, "Wavelength multiplexing system for single-mode image transmission" Appl. Opt. 36, 8474-8480 (1997)
    [CrossRef]
  11. P. Naulleau, E. Leith, �??Imaging through optical fibers by spatial coherence encoding methods,�?? J. Opt. Soc. Am. A 13, 2096 (1996).
    [CrossRef]
  12. Z. Zalevsky, J. García, P. García-Martínez, and C. Ferreira, �??Spatial information transmission using orthogonal mutual coherence coding,�?? Opt. Lett. (in press).
    [PubMed]
  13. Z. Zalevsky and D. Mendlovic, Optical Super resolution (Springer, New York, 2004)
  14. C. J. Schwarz, Y. Kuznetsova and S. R. J. Brueck, "Imaging interferometric microscopy,�?? Opt. Lett. 28, 1424-1426 (2003).
    [CrossRef] [PubMed]
  15. P. C. Sun, E. N. Leith, �??Superresolution by spatial-temporal encoding methods,�?? Appl. Opt. 31, 4857 (1992).
    [CrossRef] [PubMed]
  16. V. Mico, Z. Zalevsky, P. Garcia-Martinez, and J. Garcia, �??Single-step superresolution by interferometric imaging,�?? Opt. Express 12, 2589-2596 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-12-2589">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-12-2589</a>
    [CrossRef] [PubMed]
  17. A. Shemer, D. Mendlovic, Z. Zalevsky, J. Garcia and P. Garcia-Martinez, �??Superresolving optical system with time multiplexing and computer decoding,�?? Appl. Opt. 38, 7245-7251 (1999).
    [CrossRef]
  18. J. W. Goodman. �??Statistical properties of laser speckle patterns,�?? In Laser Speckle and Related Phenomena, J.C. Dainty, ed. (Springer-Verlag, Berlin, 1984), pp. 9-75.

Appl. Opt.

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

Laser Speckle and Related Phenomena

J. W. Goodman. �??Statistical properties of laser speckle patterns,�?? In Laser Speckle and Related Phenomena, J.C. Dainty, ed. (Springer-Verlag, Berlin, 1984), pp. 9-75.

Opt. Express

Opt. Lett.

C. J. Schwarz, Y. Kuznetsova and S. R. J. Brueck, "Imaging interferometric microscopy,�?? Opt. Lett. 28, 1424-1426 (2003).
[CrossRef] [PubMed]

Z. Zalevsky, J. García, P. García-Martínez, and C. Ferreira, �??Spatial information transmission using orthogonal mutual coherence coding,�?? Opt. Lett. (in press).
[PubMed]

Optica Acta

R. W. Gerchberg, �??Superresolution through error energy reduction,�?? Optica Acta 21, 709-720 (1974).
[CrossRef]

Other

Z. Zalevsky and D. Mendlovic, Optical Super resolution (Springer, New York, 2004)

Supplementary Material (2)

» Media 1: AVI (1376 KB)     
» Media 2: AVI (888 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Scheme of the experimental setup.

Fig. 2.
Fig. 2.

(a) Encoding speckle pattern. (b) Autocorrelation of the encoding pattern.

Fig. 3.
Fig. 3.

(a) Low pass image. (b) Reconstruction from the image set (1.34 MB).

Fig. 4.
Fig. 4.

Incoherent case. (a) Low pass image (b) Reconstruction from the image set (888 KB).

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

o ξ ( x ) = [ g ( x ) s ( x ξ ) ] h ( x ) = [ g ( x ) s ( x ξ ) ] h ( x x ) dx ,
o ( x ) = o ξ ( x ) s ( x ξ ) = { [ g ( x ) s ( x ξ ) ] h ( x x ) } s ( x ξ ) dx .
γ ( x x ) = s ( x ξ ) s ( x ξ ) = s ( ν ) s ( ν + ( x x ) ) .
o ( x ) = g ( x ) h ( x x ) γ ( x x ) dx = g ( x ) h ( x x ) dx = g ( x ) h ( x ) .
h ( x ) = h ( x ) γ ( x ) .
h ( x ) h ( x ) δ ( x ) = h ( 0 ) δ ( x ) .
γ ( x ) = sin c 2 ( Lx λz )
o incoh ( x ) = I g ( x ) [ I h ( x ) Γ ( x ) ] ,
Γ ( x ) = [ 1 + sin c 2 Lx λz ] .
o incoh ( x ) = I g ( x ) I h ( x ) + I g ( x ) .

Metrics