Abstract

A novel silica index guiding holey fiber (IGHF) design is proposed utilizing a new defect structure that is composed of an elliptic high index ring structure and an elliptic air-hole at the center with triangular lattice structure. The proposed IGHF showed unique modal properties such as uniform and high birefringence over a wide spectral range and single polarization single mode (SPSM) guidance along with a flat negative chromatic dispersion. Optical waveguide properties were numerically analyzed using the plane wave expansion method in terms of mode intensity distribution, modal birefringence, chromatic dispersion for the new defect structural parameters.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. T. A. Birks, J. C. Knight, and P. S. J. Russell, �??Endlessly single-mode photonic crystal fiber,�?? Opt. Lett. 22, 961-963 (1997).
    [CrossRef] [PubMed]
  2. J. K. Ranka, R. S. Windeler, and A. J. Stenz, �??Optical properties of high-delta air-silica microstructure optical fibers,�?? Opt. Lett. 25, 796-798 (2000).
    [CrossRef]
  3. D. Mogilevtsev, T. A. Birks, and P. St. J. Russell, �??Group-velocity dispersion in photonic crystal fibers,�?? Opt. Lett. 23, 1662-1664 (1998).
    [CrossRef]
  4. T. M. Monro, D. J. Richardson, N. G. R. Broderick, and P. J. Bennett, �??Holey optical fibers: An efficient modal model,�?? J. Lightwave Technol. 17, 1093-1102 (1999).
    [CrossRef]
  5. A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Mangan, T. A. Birks, and P. S. J. Russell, �??Highly birefringent photonic crystal fibers,�?? Opt. Lett. 25, 1325-1327 (2000).
    [CrossRef]
  6. K. Suzuki, H. Kubota, S. Kawanishi, M. Tanaka, and M. Fujita, �??Highl-speed bi-directional polarization division multiplexed optical transmission in ultra-low-loss (1.3dB/km).polarization-maintaining photonic crystal fiber,�?? Electron. Lett. 37, 1399-1401 (2001).
    [CrossRef]
  7. J. Ju, W. Jin, M. S. Demokan, �??Properties of a Highly Birefringent Photonic Crystal Fiber,�?? IEEE Photonics. Technol. Lett. 15, 1375-1377 (2003).
    [CrossRef]
  8. T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knuders, A. Bjarklev, J. R. Jensen, and H. Simonsen, �??Highly birefringent index-guiding photonic crystal fibers,�?? IEEE Photonics. Technol. Lett. 13, 588-590 (2001).
    [CrossRef]
  9. J. Noda, K. Okamoto, and Y. Sasaki, �??Polarization-maintaining fibers and their applications,�?? J. Lightwave Technol. 4, 1071-1089 (1986).
    [CrossRef]
  10. M. J. Steel, P. M. Osgood. Jr, �??Elliptic-hole photonic crystal fibers,�?? Opt. Lett. 26, 229-231 (2001).
    [CrossRef]
  11. M. J. Steel and R. M. Osgood, �??Polarization and dispersive properties of elliptical-hole photonic crystal fibers,�?? J. Lightwave Technol. 19, 495-503 (2001).
    [CrossRef]
  12. J. Broeng, D. Mogilevtsev, S. E. B. Libori, and A. Bjarklev, �??Polarization-preserving holey fibers,�?? Optical Fiber Communications, technical digest, paper MA1.3, 6-7, Anaheim, California. (2001).
  13. K. Oh, S. Choi, Y. Jung, and Jhang. W. Lee, �??Novel hollow optical fibers and eir applications in photonic devices for optical communications,�?? J. Lightwave Technol. 23, 524-532 (2005).
    [CrossRef]
  14. S. Choi, W. Shin, and K. Oh, �??Higher-order-mode dispersion compensation technique based on mode converter using hollow optical fiber,�?? In Optical Fiber Comminication Conf., 177-178 (2002).
  15. S. Choi,T. J. Eom, J. W. Yu, B. H. Lee, and K. Oh, �??Novel all-fiber bandpass filter based on hollow optical fiber,�?? IEEE Photonics. Technol. Lett. 14, 1701-1703 (2002).
    [CrossRef]
  16. I. K. Hwang, Y. H. Lee, K. Oh and D. N. Payne, �??High birefringence in elliptic hollow optical fiber,�?? Opt. Express 12, 1916-1923 (2004). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-9-1916">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-9-1916</a>.
    [CrossRef] [PubMed]
  17. S. G. Johnson, J. D. Joannopoulos, �??Block-interative frequency-domain methods for Maxwell�??s equations in a planewave basis,�?? Opt. Express 8, 173-190 (2001). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-3-173">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-3-173</a>.
    [CrossRef] [PubMed]
  18. S. Guo and S. Albin, �??Simple plane wave implementation for photoni crystal calculations,�?? Opt. Express 11, 167-175 (2003). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-2-167">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-2-167</a>.
    [CrossRef] [PubMed]
  19. In-Kag Hwang, Yong-Jae Lee, and Yong-Hee Lee, �??Birefringence induced by irregular structure in photonic crystal fiber,�?? Opt. Express 11, 2799-2806 (2003). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-22-2799">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-22-2799</a>.
    [CrossRef] [PubMed]
  20. A. Ferrando, E. Silvestre, and P. Andres, �??Designing the properties of dispersion-flattened photonic crystal fibers,�?? Opt. Express 9, 687-697 (2001). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13-687">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13-687</a>.
    [CrossRef] [PubMed]
  21. A. Ferrando, E. Silvestre, J. J. Miret, and P. Andres, �??Nearly zero ultraflattened dispersion in photonic crystal fibers,�?? Opt. Lett. 25, 790-792 (2000).
    [CrossRef]
  22. K. P. Hansen, �??Dispersion flattened hybrid-core nonlinear photonic crystal fiber,�?? Opt. Express 11, 1503- 1509 (2003). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-13-1503">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-13-1503</a>.
    [CrossRef] [PubMed]
  23. W. K. Burns, R. P. Moeller, �??Depolarised broadband source,�?? Electronics Lett., 19, 187-188 (1983).
    [CrossRef]
  24. A. T. Semenov, Vladimir R. Shidlovski, �??Very high power broad- and flat-spetrum superluminescent diodes and fiber modules for OCT applications,�?? Proc. SPIE 3915, 76-82 (2000).
    [CrossRef]
  25. W. Zhi, R. Guobin, L. Shuqin, �??A novel supercell overlapping method for different photonic crystal fibers,�?? J. Lightwave Technol. 22, 903-916 (2004).
    [CrossRef]
  26. I. Tomkos, D. Chowdhury, J. Conradi, D. Culverhouse, K. Ennser, C. Giroux, B. Hallock, T. Kennedy, A. Kruse, S. Kumar, N. Lascar, I. Roudas, M. Sharma, R. S. Vodhanel, and C.-C. Wang, �??Demonstration of negative dispersion fibers for DWDM metropolitan area networks,�?? IEEE J. Sel. Top. Quantum Electron. 7, 439-453 (2001).
    [CrossRef]
  27. Jose A. P. Morgado, Adolfo V. T. Cartaxo, �??Directly modulated laser parameters optimization for metropolitan area networks utilizing negative dispersion fibers,�?? IEEE J. Sel. Top. Quantum Electron. 9, 1315-1324 (2003).
    [CrossRef]
  28. Nader A. Issa, Martijn A. van Eijkelenborg, Matthew Fellew, Felcity Cox, Geoff Henry, and Maryanne C. J. Large, �??Fabrication and study of microstructured optical fibers with elliptical holes,�?? Opt. Lett. 29, 1336- 1338 (2004).
    [CrossRef] [PubMed]
  29. A. Bjarklev, J. Broeng, and A. S. Bjarklev, Photonic Crystal Fibers, (Kluwer Academic Publishers, 2003)
    [CrossRef]

Electron. Lett. (1)

K. Suzuki, H. Kubota, S. Kawanishi, M. Tanaka, and M. Fujita, �??Highl-speed bi-directional polarization division multiplexed optical transmission in ultra-low-loss (1.3dB/km).polarization-maintaining photonic crystal fiber,�?? Electron. Lett. 37, 1399-1401 (2001).
[CrossRef]

Electronics Lett. (1)

W. K. Burns, R. P. Moeller, �??Depolarised broadband source,�?? Electronics Lett., 19, 187-188 (1983).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

I. Tomkos, D. Chowdhury, J. Conradi, D. Culverhouse, K. Ennser, C. Giroux, B. Hallock, T. Kennedy, A. Kruse, S. Kumar, N. Lascar, I. Roudas, M. Sharma, R. S. Vodhanel, and C.-C. Wang, �??Demonstration of negative dispersion fibers for DWDM metropolitan area networks,�?? IEEE J. Sel. Top. Quantum Electron. 7, 439-453 (2001).
[CrossRef]

Jose A. P. Morgado, Adolfo V. T. Cartaxo, �??Directly modulated laser parameters optimization for metropolitan area networks utilizing negative dispersion fibers,�?? IEEE J. Sel. Top. Quantum Electron. 9, 1315-1324 (2003).
[CrossRef]

IEEE Photonics. Technol. Lett. (3)

S. Choi,T. J. Eom, J. W. Yu, B. H. Lee, and K. Oh, �??Novel all-fiber bandpass filter based on hollow optical fiber,�?? IEEE Photonics. Technol. Lett. 14, 1701-1703 (2002).
[CrossRef]

J. Ju, W. Jin, M. S. Demokan, �??Properties of a Highly Birefringent Photonic Crystal Fiber,�?? IEEE Photonics. Technol. Lett. 15, 1375-1377 (2003).
[CrossRef]

T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knuders, A. Bjarklev, J. R. Jensen, and H. Simonsen, �??Highly birefringent index-guiding photonic crystal fibers,�?? IEEE Photonics. Technol. Lett. 13, 588-590 (2001).
[CrossRef]

J. Lightwave Technol. (5)

Opt. Express (6)

S. G. Johnson, J. D. Joannopoulos, �??Block-interative frequency-domain methods for Maxwell�??s equations in a planewave basis,�?? Opt. Express 8, 173-190 (2001). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-3-173">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-3-173</a>.
[CrossRef] [PubMed]

A. Ferrando, E. Silvestre, and P. Andres, �??Designing the properties of dispersion-flattened photonic crystal fibers,�?? Opt. Express 9, 687-697 (2001). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13-687">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13-687</a>.
[CrossRef] [PubMed]

S. Guo and S. Albin, �??Simple plane wave implementation for photoni crystal calculations,�?? Opt. Express 11, 167-175 (2003). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-2-167">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-2-167</a>.
[CrossRef] [PubMed]

K. P. Hansen, �??Dispersion flattened hybrid-core nonlinear photonic crystal fiber,�?? Opt. Express 11, 1503- 1509 (2003). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-13-1503">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-13-1503</a>.
[CrossRef] [PubMed]

In-Kag Hwang, Yong-Jae Lee, and Yong-Hee Lee, �??Birefringence induced by irregular structure in photonic crystal fiber,�?? Opt. Express 11, 2799-2806 (2003). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-22-2799">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-22-2799</a>.
[CrossRef] [PubMed]

I. K. Hwang, Y. H. Lee, K. Oh and D. N. Payne, �??High birefringence in elliptic hollow optical fiber,�?? Opt. Express 12, 1916-1923 (2004). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-9-1916">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-9-1916</a>.
[CrossRef] [PubMed]

Opt. Lett. (7)

Optical Fiber Comminication Conf. 2002 (1)

S. Choi, W. Shin, and K. Oh, �??Higher-order-mode dispersion compensation technique based on mode converter using hollow optical fiber,�?? In Optical Fiber Comminication Conf., 177-178 (2002).

Optical Fiber Communications 2001 (1)

J. Broeng, D. Mogilevtsev, S. E. B. Libori, and A. Bjarklev, �??Polarization-preserving holey fibers,�?? Optical Fiber Communications, technical digest, paper MA1.3, 6-7, Anaheim, California. (2001).

Proc. SPIE (1)

A. T. Semenov, Vladimir R. Shidlovski, �??Very high power broad- and flat-spetrum superluminescent diodes and fiber modules for OCT applications,�?? Proc. SPIE 3915, 76-82 (2000).
[CrossRef]

Other (1)

A. Bjarklev, J. Broeng, and A. S. Bjarklev, Photonic Crystal Fibers, (Kluwer Academic Publishers, 2003)
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

(a) Schematic diagram of the proposed defect structure of the elliptic hole IGHF. The defect structures of (b) the conventional elliptic hole IGHF [10, 11] and (c) the prior elliptic hole IGHF with smaller elliptic hole at the center Dc [12]. The new defect structures of (d) the elliptic hole IGHF with high index ring Wring, and (e) the elliptic hole IGHF with high index ring, Wring and central airhole defect, Dc. The shaded region represents the raised index ring by doping GeO2.

Fig. 2.
Fig. 2.

Intensity profiles for bound modes of the proposed IGHF with Λ=2.2μm, D/Λ=0.7, ellipticity, η = 4, Δ=0.013, Dc=0.2Λ and Wring=2Λ at λ=1310nm (< Λcutoff). (a) y-polarization and (b) x-polarization (see Fig. 1(e)). 1D line profiles show the mode intensities along x and y directions in each polarization mode profile.

Fig. 3.
Fig. 3.

Dispersion relations of the fundamental modes and effective cladding mode for the fibers in Fig. 1(b) and (d) which do not have central air hole defect, Dc=0 (a) and for the fibers in Fig. 1(c) and (e) which have smaller elliptic air hole at the center, Dc=0.2Λ. Solid:HE11y, Open:HEx 11.

Fig. 4.
Fig. 4.

Modal birefringence for four fibers in Fig. 1: λcutoff_1 =1.42μm for the fibers in Fig. 1(c) and (e), λcutoff_2 =1.64μm for the fiber in Fig. 1(b), and λcutoff_3 =1.7μm for the fiber in Fig. 1(d) where Λ=2.2μm, D/Λ=0.7, η=4, Dc=0.2Λ, Λ=0.013, and Wring=2Λ.

Fig. 5.
Fig. 5.

Dependence of modal birefringence on defect parameters for the proposed fiber in Fig. 1(e) where Λ=2.2μm, D/Λ=0.7, and Dc=0.2Λ: (a) ellipticity, η (λcutoff_l =1. 42μm when η = 4, λcutoff_2 =1.54μm when η = 3). (b)Wring (c) index difference, Δ. Inset in (a) is the enlarged figure for the circular IGHF with two orders magnitude lower than that of elliptic IGHF.

Fig. 6.
Fig. 6.

Chromatic dispersion for four fibers in Fig.: λcutoff_1 =1.42μm for the fibers Fig.1(c) and (e), λcutoff_2 =1.64μm for the fiber in Fig. 1(b), and λcutoff_3 =1.7μm for the fiber in Fig. 1(d) where Λ=2.2μm, D/Λ=0.7, η=4, Dc=0.2λ, Δ=0.013, and Wring=Λ.

Fig. 7.
Fig. 7.

Dependence of the dispersion curves on defect parameters for the proposed fiber in Fig. 1(e) where Λ=2.2μm, D/Λ=0.7, and Dc= 0.2Λ: (a) ellipticity, η (λcutoff_1 =1.42 and λcutoff_2=1.54μm when η = 4 and 3, respectively). (b) Wringcutoff =1.42μm independent of Wring). (c) index difference, Δ (λcutoff=l.42μm independent of Δ).

Metrics