Abstract

We demonstrate high contrast quantum interference between one-photon and three-photon absorption pathways in an organic solid at room temperature. Illumination of a thin polymer film activated with fluorescing dendrimer chromophores of large three photon absorption cross section with two simultaneous femtosecond pulses at near-IR frequency ω and its third harmonic UV frequency 3ω results in a spatial interference fringe pattern observable by eye.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. M.O. Scully, and M. S. Zubairy, Quantum Optics (Oxford University Press, 1996).
  2. E.A. Manykin, and A. M. Afanas'ev, "On one possibility of making a medium transparent by multiquantum resonance," Sov. Phys. JETP 25, 828-830 (1967).
  3. P. Brumer, and M. Shapiro, "Control of unimolecular reactions using coherent light," Chem. Phys. Lett. 126, 541-546 (1986).
    [CrossRef]
  4. C. Chen, Y-Y. Yin, and D. S. Elliott, "Interference between optical transitions," Phys. Rev. Lett. 64, 507-510 (1990).
    [CrossRef] [PubMed]
  5. L. Zhu, V. Kleinman, X. Li, S. P. Lu, K. Trentelman, and R. Gordon,"Coherent laser control of the product distribution obtained in the photoexcitation of HI," Science, 207, 77-80 (1995).
    [CrossRef]
  6. G. Xing, X. Wang, X. Huang, R. Bersohn, and B. Katz, "Modulation of resonant multiphoton ionization of CH3I by laser phase variation," J. Chem. Phys. 104, 826-828 (1996).
    [CrossRef]
  7. S. A. Rice, "Interfering for the good of a chemical reaction", Nature 406, 422-426 (2001).
    [CrossRef]
  8. M. Drobizhev, A. Karotki, A. Rebane, and C.W. Spangler, "New dendrimer molecules with record large two-photon absorption cross-section," Opt. Lett. 26, 1081-1083 (2001).
    [CrossRef]
  9. M. Drobizhev, A. Karotki, Y. Dzenis, and A. Rebane, Zhiyong Suo and C.W. Spangler, "Strong cooperative enhancement of two-photon absorption in dendrimers," J. Phys. Chem. B 107, 7540-7543 (2003).
    [CrossRef]
  10. M. Drobizhev, A. Karotki, M. Kruk, Yu. Dzenis, A. Rebane, Z. Suo, and C.W. Spangler, "Uncovering coherent domain structure in a series of �?-conjugated dendrimers by simultaneous three-photon absorption," J. Phys. Chem. B 108, 4221-4226 (2004).
    [CrossRef]
  11. C. Y. Ye, V. A. Sautenkov, Y. V. Rostovtsev, and M. O. Scully, "Fast optical switching via stimulated Raman adiabatic passage," Opt. Lett. 28, 2213 -2215 (2003).
    [CrossRef] [PubMed]
  12. M. Bajcsy, A. S. Zibrov, and M. D. Lukin, "Stationary pulses of light in an atomic medium," Nature 426, 638-641(2003).
    [CrossRef] [PubMed]
  13. A. P. Heberle, J. J. Baumberg, K. Koeler "Ultrafast coherent control and destruction of excitons inquantum wells," Phys. Rev. Lett. 75, 2598-2601 (1995).
    [CrossRef] [PubMed]
  14. A. Hache, J. E. Sipe, and H. M. Driel, "Quantum interference control of electrical currents in GaAs," IEEE J. Quantum Electron. 14, 1144-1154 (1998).
    [CrossRef]
  15. M. Albota, J.-L. Bredas, S. Marder, J. W. Perry, and W. W. Webb, "Design of organic molecules with large two-photon absorption cross sections," Science 281, 1653-1657 (1998).
    [CrossRef] [PubMed]
  16. B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, S. R. Marder and J. W. Perry, "Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication," Nature 398, 51-54 (1999).
    [CrossRef]
  17. G. S. He, P. P. Markowicz, T.-C. Lin, and P. Prasad, "Observation of stimulated emission by direct three-photon excitation," Nature 415, 767-770 (2002).
    [CrossRef] [PubMed]
  18. C. W. Spangler, Z. Suo, M. Drobizhev, A. Karotki, and A. Rebane, �??New organic dendrimers with greatly enhanced multi-photon absorption for photonic applications,�?? in: Organic Nanophotonics, F. Charra, V. M. Agranovich, and F. Kajzar, eds. (Kluwer Academiv Pub., Dadrech, 2003), pp.139-153.
  19. R. N. Dixon, D. W. Heang, X. F. Yang, S. Harich, J. J. Lin and X. Yang, "Chemical "Double slits": Dynamical interference of photodissociation pathways in water," Science 285, 1249-1253 (1999).
    [CrossRef] [PubMed]
  20. R. J. Gordon, L. Zhu, and T. Seideman, "Using the phase of light as a photochemical tool," J. Phys. Chem. A 105, 4387- 4394 (2001).
    [CrossRef]

Chem. Phys. Lett. (1)

P. Brumer, and M. Shapiro, "Control of unimolecular reactions using coherent light," Chem. Phys. Lett. 126, 541-546 (1986).
[CrossRef]

IEEE J. Quantum Electron. (1)

A. Hache, J. E. Sipe, and H. M. Driel, "Quantum interference control of electrical currents in GaAs," IEEE J. Quantum Electron. 14, 1144-1154 (1998).
[CrossRef]

J. Chem. Phys. (1)

G. Xing, X. Wang, X. Huang, R. Bersohn, and B. Katz, "Modulation of resonant multiphoton ionization of CH3I by laser phase variation," J. Chem. Phys. 104, 826-828 (1996).
[CrossRef]

J. Phys. Chem. A (1)

R. J. Gordon, L. Zhu, and T. Seideman, "Using the phase of light as a photochemical tool," J. Phys. Chem. A 105, 4387- 4394 (2001).
[CrossRef]

J. Phys. Chem. B (2)

M. Drobizhev, A. Karotki, Y. Dzenis, and A. Rebane, Zhiyong Suo and C.W. Spangler, "Strong cooperative enhancement of two-photon absorption in dendrimers," J. Phys. Chem. B 107, 7540-7543 (2003).
[CrossRef]

M. Drobizhev, A. Karotki, M. Kruk, Yu. Dzenis, A. Rebane, Z. Suo, and C.W. Spangler, "Uncovering coherent domain structure in a series of �?-conjugated dendrimers by simultaneous three-photon absorption," J. Phys. Chem. B 108, 4221-4226 (2004).
[CrossRef]

Nature (4)

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, S. R. Marder and J. W. Perry, "Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication," Nature 398, 51-54 (1999).
[CrossRef]

G. S. He, P. P. Markowicz, T.-C. Lin, and P. Prasad, "Observation of stimulated emission by direct three-photon excitation," Nature 415, 767-770 (2002).
[CrossRef] [PubMed]

S. A. Rice, "Interfering for the good of a chemical reaction", Nature 406, 422-426 (2001).
[CrossRef]

M. Bajcsy, A. S. Zibrov, and M. D. Lukin, "Stationary pulses of light in an atomic medium," Nature 426, 638-641(2003).
[CrossRef] [PubMed]

Opt. Lett. (2)

Organic Nanophotonics (1)

C. W. Spangler, Z. Suo, M. Drobizhev, A. Karotki, and A. Rebane, �??New organic dendrimers with greatly enhanced multi-photon absorption for photonic applications,�?? in: Organic Nanophotonics, F. Charra, V. M. Agranovich, and F. Kajzar, eds. (Kluwer Academiv Pub., Dadrech, 2003), pp.139-153.

Phys. Rev. Lett. (2)

A. P. Heberle, J. J. Baumberg, K. Koeler "Ultrafast coherent control and destruction of excitons inquantum wells," Phys. Rev. Lett. 75, 2598-2601 (1995).
[CrossRef] [PubMed]

C. Chen, Y-Y. Yin, and D. S. Elliott, "Interference between optical transitions," Phys. Rev. Lett. 64, 507-510 (1990).
[CrossRef] [PubMed]

Science (3)

L. Zhu, V. Kleinman, X. Li, S. P. Lu, K. Trentelman, and R. Gordon,"Coherent laser control of the product distribution obtained in the photoexcitation of HI," Science, 207, 77-80 (1995).
[CrossRef]

R. N. Dixon, D. W. Heang, X. F. Yang, S. Harich, J. J. Lin and X. Yang, "Chemical "Double slits": Dynamical interference of photodissociation pathways in water," Science 285, 1249-1253 (1999).
[CrossRef] [PubMed]

M. Albota, J.-L. Bredas, S. Marder, J. W. Perry, and W. W. Webb, "Design of organic molecules with large two-photon absorption cross sections," Science 281, 1653-1657 (1998).
[CrossRef] [PubMed]

Sov. Phys. JETP (1)

E.A. Manykin, and A. M. Afanas'ev, "On one possibility of making a medium transparent by multiquantum resonance," Sov. Phys. JETP 25, 828-830 (1967).

Other (1)

M.O. Scully, and M. S. Zubairy, Quantum Optics (Oxford University Press, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Main figure: experimental set up. A thin film of compound 1 generates 3rd harmonic at 415 nm with efficiency 1%. Compound 2 absorbs simultaneously UV and IR, and produces visible fluorescence at 560nm wavelength. Inset: a, conventional detector observes no interference between frequency ω and 3ω because these IR and UV wavelengths are absorbed independently from each other. b, Interference appears if a special detector (compound 2) is used, which is capable of absorbing, in the same electronic transition, both UV and IR wavelengths.

Fig. 2.
Fig. 2.

Absorption spectrum (right vertical scale and lower horizontal scale) and chemical structure of three-arm G-0 dendrimer based on bis-diphenylamino stilbene (BDPAS) repeat units (compound 1), and four-arm hybrid G-0 dendrimer based on bis-diphenylamino di-styryl benzene (BDPADSB) core with attached BDPAS branches (compound 2). Maximum molar extinction is, ε(420nm)=1.1 105 M-1 cm-1 and ε(420nm)=2.5 105 M-1 cm-1, for the compound 1 and 2, correspondingly. Black squares present three photon absorption cross section of compound 2 (left vertical scale and upper horizontal scale for laser wavelength).

Fig. 3.
Fig. 3.

Image of the fluorescence when UV pulse (a) or IR pulse (b) is applied alone. c, Interference pattern observed when both UV and IR pulses are applied simultaneously. d, Vertical intensity profile of the three images (along dashed lines). Dashed curve, estimated pattern of maximum contrast interference.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

D = c 3 ω 1 2 Sin θ 2 .
F QI F UV + e i ϕ F IR 2 ,

Metrics