Abstract

This report presents an investigation of composite fiber Raman amplifiers (i.e., a distributed fiber Raman amplifier followed by a discrete fiber Raman amplifier) with incoherent pumping, compared to conventional coherent pumping. It is shown that a flatter gain, noise figure and optical signal-to-noise ratio (OSNR) over 100-nm bandwidth can be achieved simultaneously by using two counter-incoherent pumps, compared to using six counter-coherent pumps. Moreover, it is found that a further improvement in gain, noise figure and OSNR flatness can be obtained in composite fiber Raman amplifiers with bi-directional incoherent pumping. The flatness of both gain and OSNR with a ripple of 1 dB is predicted by using one co- incoherent pump and one counter- incoherent pump.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. L. Mollenauer, J. Gordon, and M. Islam, �??Soliton propagation in long fibers with periodically compensated loss,�?? IEEE J. Quantum Electron. 22, 157-173 (1986).
    [CrossRef]
  2. M. Islam, �??Raman amplifiers for telecommunications,�?? IEEE J. Sel. Top. Quantum Electron. 8, 548-559 (2002).
    [CrossRef]
  3. J. Bromage, �??Raman amplification for fiber communication systems,�?? J. Lightwave Technol. 22, 79-93(2004).
    [CrossRef]
  4. V. Perlin, G. Winful, �??Optimal design of flat gain wide band fiber Raman amplifiers,�?? J. Lightwave Technol. 20, 250-254 (2002).
    [CrossRef]
  5. V. Perlin, and G. Winful, �??On distributed Raman amplification for ultrabroad-band long-haul WDM systems,�?? J. Lightwave Technol. 20, 409-416 (2002).
    [CrossRef]
  6. X. Liu, and B. Lee, �??Optimal design for ultra-broad band amplifiers,�?? J. Lightwave Technol. 21, 3446-3455 (2003).
    [CrossRef]
  7. T. Kung, C. Chang, J. Dung, and S. Chi, �??Four-wave mixing between pump and signal in a distributed Raman amplifier,�?? J. Lightwave Technol. 21, 1164-1170 (2003).
    [CrossRef]
  8. J. Bouteiller, L. Leng, and C. Headley, �??Pump�??pump four-wave mixing in distributed Raman amplified systems,�?? J. Lightwave Technol. 22, 723-732 (2004).
    [CrossRef]
  9. W. Wong, C. Chen, M. Ho, and H. Lee, �??Phase-matched four-wave mixing between pumps and signals in a co-pumped Raman amplifier,�?? IEEE Photonics Technol. Lett. 15, 209-211 (2003).
    [CrossRef]
  10. X. Zhou, M. Birk, and S. Woodward, �??Pump-noise induced FWM effect and its reduction in a distributed Raman fiber amplifiers,�?? IEEE Photonics Technol. Lett. 14, 1686-1688 (2002).
    [CrossRef]
  11. F. Pasquale and F. Meli, �??New Raman pump module for reducing pump�??signal four-wave-mixing interaction in co-pumped distributed Raman amplifiers,�?? J. Lightwave Technol. 22, 1742-1748 (2003).
    [CrossRef]
  12. S. Sugliani, G. Sacchi, G. Bolognini, S. Faralli, and F. Pasquale, �??Effective suppression of penalties induced by parametric nonlinear interaction in distributed Raman amplifiers based on NZ-DS fibers,�?? IEEE Photonics Technol. Lett. 16, 81-83 (2004).
    [CrossRef]
  13. G. Bolognini, S. Sugliani, and F. Pasquale, �??Double Rayleigh scattering noise in Raman amplifiers using pump time-division-multiplexing schemes,�?? IEEE Photonics Technol. Lett. 16, 1286-1288 (2004).
    [CrossRef]
  14. J. Bromage, P. Winzer, L. Nelson, M. Mermelstein, and C. Headley, �??Amplified spontaneous emission in pulse-pumped Raman amplifiers,�?? IEEE Photonics Technol. Lett. 15, 667-669 (2003).
    [CrossRef]
  15. D. Vakhshoori, M. Azimi, P. Chen, B. Han, M. Jiang, L. Knopp, C. Lu, Y. Shen, G. Rodes, S. Vote, P. Wang, and X. Zhu, �??Raman amplification using high-power incoherent semiconductor pump sources,�?? OFC 2003, Paper PD47.
  16. X. Zhou, and M. Birk, �??New design method for a WDM system employing broad-band Raman amplification,�?? IEEE Photonics Technol. Lett. 16, 912-914 (2004).
    [CrossRef]
  17. S. Kado, Y. Emori, and S. Namiki, �??Gain and noise tilt control in multi-wavelength bi-directionally pumped Raman amplifier,�?? OFC 2002, pp.62-63, Paper TuJ4.
  18. I. Mandelbaum, and M. Bolshtyansky, �??Raman amplifier model in single-mode optical fiber,�?? IEEE Photonics Technol. Lett. 15, 1704-1706 (2003).
    [CrossRef]
  19. X. Liu, and B. Lee, �??A fast and stable method for Raman amplifier propagation equations,�?? Opt. Express 11, 2163- 2176 (2003).
    [CrossRef] [PubMed]
  20. K. Rottwitt, A. Stentz, L. Leng, M. Lines, and H. Smith, �??Scaling of the Raman gain coefficient: applications to Germanosilicate fibers,�?? J. Lightwave Technol. 21, 1652-1662 (2003).
    [CrossRef]
  21. T. Zhang, X. Zhang, and G. Zhang, �??Distributed fiber Raman amplifiers with incoherent pumping,�?? IEEE Photonics Technol. Lett. 17, 1175-1177 (2005).
    [CrossRef]

IEEE J. Quantum Electron. (1)

L. Mollenauer, J. Gordon, and M. Islam, �??Soliton propagation in long fibers with periodically compensated loss,�?? IEEE J. Quantum Electron. 22, 157-173 (1986).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

M. Islam, �??Raman amplifiers for telecommunications,�?? IEEE J. Sel. Top. Quantum Electron. 8, 548-559 (2002).
[CrossRef]

IEEE Photonics Technol. Lett. (8)

T. Zhang, X. Zhang, and G. Zhang, �??Distributed fiber Raman amplifiers with incoherent pumping,�?? IEEE Photonics Technol. Lett. 17, 1175-1177 (2005).
[CrossRef]

S. Sugliani, G. Sacchi, G. Bolognini, S. Faralli, and F. Pasquale, �??Effective suppression of penalties induced by parametric nonlinear interaction in distributed Raman amplifiers based on NZ-DS fibers,�?? IEEE Photonics Technol. Lett. 16, 81-83 (2004).
[CrossRef]

G. Bolognini, S. Sugliani, and F. Pasquale, �??Double Rayleigh scattering noise in Raman amplifiers using pump time-division-multiplexing schemes,�?? IEEE Photonics Technol. Lett. 16, 1286-1288 (2004).
[CrossRef]

J. Bromage, P. Winzer, L. Nelson, M. Mermelstein, and C. Headley, �??Amplified spontaneous emission in pulse-pumped Raman amplifiers,�?? IEEE Photonics Technol. Lett. 15, 667-669 (2003).
[CrossRef]

W. Wong, C. Chen, M. Ho, and H. Lee, �??Phase-matched four-wave mixing between pumps and signals in a co-pumped Raman amplifier,�?? IEEE Photonics Technol. Lett. 15, 209-211 (2003).
[CrossRef]

X. Zhou, M. Birk, and S. Woodward, �??Pump-noise induced FWM effect and its reduction in a distributed Raman fiber amplifiers,�?? IEEE Photonics Technol. Lett. 14, 1686-1688 (2002).
[CrossRef]

X. Zhou, and M. Birk, �??New design method for a WDM system employing broad-band Raman amplification,�?? IEEE Photonics Technol. Lett. 16, 912-914 (2004).
[CrossRef]

I. Mandelbaum, and M. Bolshtyansky, �??Raman amplifier model in single-mode optical fiber,�?? IEEE Photonics Technol. Lett. 15, 1704-1706 (2003).
[CrossRef]

J. Lightwave Technol. (8)

OFC 2002 (1)

S. Kado, Y. Emori, and S. Namiki, �??Gain and noise tilt control in multi-wavelength bi-directionally pumped Raman amplifier,�?? OFC 2002, pp.62-63, Paper TuJ4.

OFC 2003 (1)

D. Vakhshoori, M. Azimi, P. Chen, B. Han, M. Jiang, L. Knopp, C. Lu, Y. Shen, G. Rodes, S. Vote, P. Wang, and X. Zhu, �??Raman amplification using high-power incoherent semiconductor pump sources,�?? OFC 2003, Paper PD47.

Opt. Express (1)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Optimal pump wavelengths and pump power for (a) distributed FRA and (b) discrete FRA for the composite FRA with six counter-coherent pumps

Fig. 2.
Fig. 2.

Optimal pump wavelengths, FWHM, and power for (a) one incoherent pump and (b) two incoherent pumps (Distributed FRA: red, and discrete FRA: black) for the composite FRA with one counter- incoherent pump or two counter-incoherent pumps.

Fig. 3.
Fig. 3.

(a) Total Raman gain, (b) total noise figure, and (c) OSNR for the composite fiber FRA with one counter-incoherent pump, or two counter- incoherent pumps or six counter- coherent pumps.

Fig. 4.
Fig. 4.

(a) Distributed on-off gain, (b) output ASE power from the distributed FRAs, and (c) total output ASE power. Others are the same as in Fig. 3.

Fig. 5.
Fig. 5.

Optimal pump parameters for (a) the distributed FRA and (b) the discrete FRA with a co- incoherent pump and a counter- incoherent pump.

Fig. 6.
Fig. 6.

(a) Raman gain and (b) noise figure from the distributed and discrete FRAs; (c) OSNR at the output of the distributed and discrete FRAs; with pumps shown in Fig. 5.

Fig. 7.
Fig. 7.

(a) Raman gain, (b) noise figure and (c) OSNR for the pump power distributions of 59%, 62% and 73%. Others are the same as in Fig. 6.

Metrics