Abstract

We report a polarization-maintaining fiber in which the birefringence is due to artificially introduced anisotropy in the core material. The beat length was measured by direct observation at three different wavelengths, giving a shortest result of 85 µm at a wavelength of 543 nm. The measured phase-index birefringence is about one third of that expected, which is explained by diffusion between the core layers, which are each less than 200 nm thick. By taking account of this diffusion, we can accurately model the experimental beat length and differential group delay over a wide wavelength range.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. R. B. Dyott, Elliptical Fiber Waveguides (Artech House, Boston, London, 1995).
  2. D. N. Payne, A. J. Barlow, and J. J. R. Hansen, �??Development of low- and high-birefringence optical fibers,�?? IEEE J. Quantum Electron. QE-18, 477-488 (1982).
    [CrossRef]
  3. T. Hosaka, K. Okamoto, T. Miya, Y. Sasaki, and T. Edahiro, �??Low-loss single polarisation fibers with asymmetrical strain birefringence,�?? Electron. Lett. 17, 530-531 (1981).
    [CrossRef]
  4. M. P. Varnham, D. N. Payne, R. D. Birch, and E. J. Tarbox, �??Single-polarization operation of highly birefringent bow-tie optical fibers,�?? Electron. Lett. 19, 246-247 (1983).
    [CrossRef]
  5. R. B. Dyott, J. R. Cozens, and D. G. Morris, �??Preservation of polarization in optical-fiber waveguides with elliptical cores,�?? Electron. Lett. 15, 380-382 (1979).
    [CrossRef]
  6. T. Okoshi, K. Oyamada, M. Nishimura, and H. Yokata, �??Side-tunnel-fiber: An approach to polarization maintaining optical waveguide scheme,�?? Electron. Lett. 18, 824-826 (1982).
    [CrossRef]
  7. Max Born, Emil Wolf, Principles of Optics, sixth edition (Pergamon, Oxford, 1980), chap. 14.5.
  8. M.J. Gander, R. McBride, J.D.C. Jones, D. Mogilevtsev, T.A. Birks, J.C. Knight and P.St.J. Russell, "Experimental measurement of group velocity dispersion in photonic crystal fiber," Electron. Lett. 35, 63-64 (1999).
    [CrossRef]
  9. F. Luan, A. K. George, T. D. Hedley, G. J. Pearce, D. M. Bird, J. C. Knight, P. St.J. Russell, �??All-solid photonic band gap fiber,�?? Opt. Lett. 29, 2369-2371 (2004).
    [CrossRef] [PubMed]
  10. M. D. Feit and J. A. Fleck, �??Light propagation in graded-index optical fibers,�?? Appl. Opt. 17, 3990-3997, (1978).
    [CrossRef] [PubMed]
  11. D. Yevick, �??A guide to electric field propagation techniques for guided-wave optics,�?? Opt. Quantum Electron. 26 (3), S185-S197, (1994).
    [CrossRef]
  12. R. Scarmozzino, A. Gopinath, R. Pregla and S. Helfert, �??Numerical techniques for modeling guided-wave photonic devices,�?? IEEE J. Sel. Top. Quant. 6(1), 150-162 (2000).
    [CrossRef]

Appl. Opt. (1)

Electron. Lett. (5)

T. Hosaka, K. Okamoto, T. Miya, Y. Sasaki, and T. Edahiro, �??Low-loss single polarisation fibers with asymmetrical strain birefringence,�?? Electron. Lett. 17, 530-531 (1981).
[CrossRef]

M. P. Varnham, D. N. Payne, R. D. Birch, and E. J. Tarbox, �??Single-polarization operation of highly birefringent bow-tie optical fibers,�?? Electron. Lett. 19, 246-247 (1983).
[CrossRef]

R. B. Dyott, J. R. Cozens, and D. G. Morris, �??Preservation of polarization in optical-fiber waveguides with elliptical cores,�?? Electron. Lett. 15, 380-382 (1979).
[CrossRef]

T. Okoshi, K. Oyamada, M. Nishimura, and H. Yokata, �??Side-tunnel-fiber: An approach to polarization maintaining optical waveguide scheme,�?? Electron. Lett. 18, 824-826 (1982).
[CrossRef]

M.J. Gander, R. McBride, J.D.C. Jones, D. Mogilevtsev, T.A. Birks, J.C. Knight and P.St.J. Russell, "Experimental measurement of group velocity dispersion in photonic crystal fiber," Electron. Lett. 35, 63-64 (1999).
[CrossRef]

IEEE J. Quantum Electron. (1)

D. N. Payne, A. J. Barlow, and J. J. R. Hansen, �??Development of low- and high-birefringence optical fibers,�?? IEEE J. Quantum Electron. QE-18, 477-488 (1982).
[CrossRef]

IEEE J. Sel. Top. Quant. (1)

R. Scarmozzino, A. Gopinath, R. Pregla and S. Helfert, �??Numerical techniques for modeling guided-wave photonic devices,�?? IEEE J. Sel. Top. Quant. 6(1), 150-162 (2000).
[CrossRef]

Opt. Lett. (1)

Opt. Quantum Electron. (1)

D. Yevick, �??A guide to electric field propagation techniques for guided-wave optics,�?? Opt. Quantum Electron. 26 (3), S185-S197, (1994).
[CrossRef]

Other (2)

R. B. Dyott, Elliptical Fiber Waveguides (Artech House, Boston, London, 1995).

Max Born, Emil Wolf, Principles of Optics, sixth edition (Pergamon, Oxford, 1980), chap. 14.5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(a) Optical image of the preform with one jacketing tube; (b) Scanning electron image of the lamellar core fiber with 1.2 μm core size and 50 Jim outer diameter; (c) Backscattered electron image of the core region for the fiber in (b).

Fig. 2.
Fig. 2.

Optical micrograph of the beating in the fiber excited by a He-Ne 543 nm laser. The measured beat length is about 85 μm.

Fig. 3.
Fig. 3.

Beat lengths at different wavelengths. The black dots: measured beat lengths at the wavelengths of 543 nm, 632 nm and 781 nm. The red line: numerical modeling result assuming diffusion in the fiber core (see Fig. 6).

Fig. 4.
Fig. 4.

The differential group delay for the two fundamental polarization modes. The black dot: experimental result (the measured fiber length: 80 mm); the red line: numerical modeling result taking account of the diffusion in the core (see Fig. 6).

Fig. 5.
Fig. 5.

Beamprop modeling results for the effective indices of the fundamental polarization modes in the fiber. The upper line shows the birefringence.

Fig. 6.
Fig. 6.

The refractive index distribution assumed in the fiber. The black dotted line: bulk material index constants (as used in producing Fig. 5). Red solid line: assumed result of diffusion during fiber drawing (as used to produce numerical results in Fig. 3 and 4.)

Metrics