Abstract

Spatial modulation of a laser beam with a transverse size of the order of one grain size is experimentally found at thermal depolarization in Nd:YAG ceramics. This effect, which was theoretically predicted earlier, is typical for ceramics only, with no analogs either in glasses or in single crystals.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. A. Ikesue, T. Kinoshita, K. Kamata, and K. Yoshida, "Fabrication and optical properties of high-performance polycrystalline Nd:YAG ceramics for solid-state lasers," J. Am. Ceram. Soc. 78, 1033 (1995).
    [CrossRef]
  2. I. Shoji, Y. Sato, S. Kurimura, V. Lupei, T. Taira, A. Ikesue, and K. Yoshida, "Thermal-birefringence-induced depolarization in Nd: YAG ceramics," Opt. Lett. 27, 234 (2002).
    [CrossRef]
  3. J. Lu, M. Prabhu, J. Song, C. Li, J. Xu, K. Ueda, A. A. Kaminskii, H. Yagi, and T. Yanagitani, "Optical properties and highly efficient laser oscillation of Nd:YAG ceramic," Appl. Phys. B 71, 469 (2000).
    [CrossRef]
  4. E. A. Khazanov, "Thermally induced birefringence in Nd:YAG ceramics," Opt. Lett. 27, 716 (2002).
    [CrossRef]
  5. J. R. Lu, J. H. Lu, T. Murai, K. Takaichi, T. Uematsu, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, "Nd3+:Y2O3 ceramic laser," Jpn. J. Appl. Phys. 40, L1277 (2001).
    [CrossRef]
  6. K. Takaichi, J. R. Lu, T. Murai, T. Uematsu, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, "Chromium doped Y3A15O12 ceramics - a novel saturable absorber for passively self-Q-switched one-micron solid state lasers," Jpn. J. Appl. Phys. 41, L96 (2002).
    [CrossRef]
  7. M. A. Kagan and E. A. Khazanov, "Features of compensation of thermally induced depolarization in polycrystalline Nd:YAG ceramic," Quantum Electron. 33, 876 (2003).
    [CrossRef]
  8. M. A. Kagan and E. A. Khazanov, "Thermally induced birefringence in Faraday devices made from terbium gallium garnet-polycrystalline ceramics," Appl. Opt. 43, 6030 (2004).
    [CrossRef] [PubMed]
  9. J. Lu, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, "Highly efficient 2% Nd:yttrium aluminum garnet ceramic laser," Appl. Phys. Lett. 77, 3707 (2000).
    [CrossRef]
  10. K. Ueda, "Ceramic lasers for IFE power plant," in Proceedings of International Conference on Lasers, Applications, and Technologies, 2005.
  11. I. Shoji, S. Kurimura, Y. Sato, T. Taira, A. Ikesue, and K. Yoshida, "Thermal birefringence in Nd3+-doped YAG ceramics," in Proceedings of Conference on Lasers and Electro-Optics, 2001, p. 560.
  12. J. Lu, T. Murai, K. Takaichi, T. Uematsu, K. Misawa, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, and A. Kudryashov, "72 W Nd: Y3Al5O12 ceramic laser," Appl. Phys. Lett. 78, 3586 (2001).
    [CrossRef]
  13. E. Khazanov, N. Andreev, O. Palashov, A. Poteomkin, A. Sergeev, O. Mehl, and D. Reitze, "Effect of terbium gallium garnet crystal orientation on the isolation ratio of a Faraday isolator at high average power," Appl. Opt. 41, 483 (2002).
    [CrossRef] [PubMed]

Appl. Opt. (2)

Appl. Phys. B (1)

J. Lu, M. Prabhu, J. Song, C. Li, J. Xu, K. Ueda, A. A. Kaminskii, H. Yagi, and T. Yanagitani, "Optical properties and highly efficient laser oscillation of Nd:YAG ceramic," Appl. Phys. B 71, 469 (2000).
[CrossRef]

Appl. Phys. Lett. (2)

J. Lu, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, "Highly efficient 2% Nd:yttrium aluminum garnet ceramic laser," Appl. Phys. Lett. 77, 3707 (2000).
[CrossRef]

J. Lu, T. Murai, K. Takaichi, T. Uematsu, K. Misawa, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, and A. Kudryashov, "72 W Nd: Y3Al5O12 ceramic laser," Appl. Phys. Lett. 78, 3586 (2001).
[CrossRef]

Conference on Lasers and Electro-Optics (1)

I. Shoji, S. Kurimura, Y. Sato, T. Taira, A. Ikesue, and K. Yoshida, "Thermal birefringence in Nd3+-doped YAG ceramics," in Proceedings of Conference on Lasers and Electro-Optics, 2001, p. 560.

Intl. Conf. on Lasers, Appl., and Tech. (1)

K. Ueda, "Ceramic lasers for IFE power plant," in Proceedings of International Conference on Lasers, Applications, and Technologies, 2005.

J. Am. Ceram. Soc. (1)

A. Ikesue, T. Kinoshita, K. Kamata, and K. Yoshida, "Fabrication and optical properties of high-performance polycrystalline Nd:YAG ceramics for solid-state lasers," J. Am. Ceram. Soc. 78, 1033 (1995).
[CrossRef]

Jpn. J. Appl. Phys. (2)

J. R. Lu, J. H. Lu, T. Murai, K. Takaichi, T. Uematsu, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, "Nd3+:Y2O3 ceramic laser," Jpn. J. Appl. Phys. 40, L1277 (2001).
[CrossRef]

K. Takaichi, J. R. Lu, T. Murai, T. Uematsu, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, "Chromium doped Y3A15O12 ceramics - a novel saturable absorber for passively self-Q-switched one-micron solid state lasers," Jpn. J. Appl. Phys. 41, L96 (2002).
[CrossRef]

Opt. Lett. (2)

Quantum Electron. (1)

M. A. Kagan and E. A. Khazanov, "Features of compensation of thermally induced depolarization in polycrystalline Nd:YAG ceramic," Quantum Electron. 33, 876 (2003).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic of the experiment: (1) laser, P 0=50W (wavelength 1076nm); (2) polarizer; (3) Faraday isolator; (4) λ/2 plate; (5) telescope; (6) spar wedge; (7) sample; (8) nontransmitting mirror; (9) polarizer; (10) glass wedge; (11) lens, focal length 516 mm; (12) CCD camera.

Fig. 2.
Fig. 2.

Theoretical and experimental distributions I d, <I d>, √Dd , √D Γ.

Fig. 3.
Fig. 3.

Transverse distribution of root-mean-square deviation √Dd /<I d> of depolarized beam (1) and √D 0/<I 0> of polarized beam (2). Dashed lines indicate intensity distributions I d (1) and I 0 (2).

Fig. 4.
Fig. 4.

Theoretical (curves) and experimental (points) dependences of √D Γ integrated over cross section on laser power for various integration domains. The integration domains have radii r 0 (1), 1.22 r 0 (2), and 1.41 r 0 (3) and are shown in the inset.

Metrics