Abstract

Microchannels are fabricated in a poly(methyl methacrylate) substrate by high repetition rate, nanojoule femtosecond laser pulses. The mechanism for channel fabrication is based on the localized heating of the substrate due to the high repetition rate of the laser, resulting in smooth walled cylindrical channels. Microchannels with diameters of 8 – 20 μm can be fabricated at 800 μm/s using 80 fs pulses at a repetition rate of 80 MHz and energy of 0.9 nJ/pulse.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. C. B. Schaffer, A. O. Jamison and E. Mazur, �??Morphology of femtosecond laser-induced structural changes in bulk transparent materials,�?? App. Phys. Lett. 84, 1441-1443 (2004).
    [CrossRef]
  2. D. Ashkenasi, G. Muller, A. Rosenfeld, R. Stoian, I. V. Hertel, N. M. Bulgakova and E. E. B. Campbell, �??Fundamentals and advantages of ultrafast micro-structuring of transparent materials,�?? App. Phys. A 77, 223-228 (2003).
  3. Z. Wu, H. Jiang, Z. Zhang, Q. Sun, H. Yang and Q. Gong, �??Morphological investigation at the front and rear surfaces of fused silica processed with femtosecond laser pulses in air,�?? Opt. Express 10, 1244-1249 (2002).
    [PubMed]
  4. C. B. Schaffer, A. Brodeur, J. F. Garcia and E. Mazur, �??Micromachining bulk glass by use of femtosecond lasers pulses with nanojoule energy,�?? Opt. Lett. 26, 93-95 (2001).
    [CrossRef]
  5. E. N. Glezer, M. Milosavljevic, L. Huang, R. J. Finlay, T. H. Her, J. P. Callan and E. Mazur, �??Three-dimensional optical storage inside transparent materials,�?? Opt. Lett. 21, 2023-2025 (1996).
    [CrossRef] [PubMed]
  6. K. M. Davis, K. Miura, N. Sugimoto and K. Hirao, �??Writing waveguides in glass with a femtosecond laser,�?? Opt. Lett. 21, 1729-1731 (1996).
    [CrossRef] [PubMed]
  7. M. Masuda, K. Sugiola, Y. Cheng, N. Aoki, M. Kawachi, K. Shihoyama, K. Toyoda, H. Helvajian and K. Midorikawa, �??3-D microstructuring inside photosensitive glass by femtosecond laser excitation,�?? App. Phys. A 76, 857-860 (2003).
    [CrossRef]
  8. Y. Cheng, K. Sugioka, K. Midorikawa, M. Masuda, K. Toyoda, M. Kawachi and K. Shihoyama, �??Three-dimensional micro-optical components embedded in photosensitive glass by a femtosecond laser,�?? Opt. Lett. 28, 1144-1146 (2003).
    [CrossRef] [PubMed]
  9. Y. Cheng, K. Sugioka and K. Midorikawa, �??Microfluidic laser embedded in glass by three-dimensional femtosecond laser microprocessing,�?? Opt. Lett. 29, 2007-2009 (2004).
    [CrossRef] [PubMed]
  10. Y. Li, K. Itoh, W. Watanabe, K. Yamada, D. Kuroda, J. Nishii and Y. Jiang, �??Three-dimensional hole drilling of silica glass from the rear surface with femtosecond laser pulses,�?? Opt. Lett. 26, 1912-1914 (2001).
    [CrossRef]
  11. M. S. Giridhar, K. Seong, A. Schulzgen, P. Khulbe, N. Peyghambarian and M. Mansuripur, �??Femtosecond pulsed laser micromachining of glass substrates with application to microfluidic devices,�?? App. Opt. 43, 4584-4589 (2004).
    [CrossRef]
  12. R. An, Y. Li, Y. Dou, H. Yang and Q. Gong, �??Simultaneous multi-microhole drilling of soda-lime glass by water-assisted ablation with femtosecond laser pulses,�?? Opt. Express 13, 1855-1859 (2005).
    [CrossRef] [PubMed]
  13. D. J. Hwang, T. Y. Choi and C. P. Grigoropoulos, �??Liquid-assisted femtosecond laser drilling of straight and three-dimensional microchannels in glass,�?? App. Phys. A 79, 605-612 (2004).
    [CrossRef]
  14. Y. Iga, T. Ishizuka, W. Watanabe, K. Itoh, Y. Li and J. Nishii, �??Characterization of micro-channels fabricated by in-water ablation of femtosecond laser pulses,�?? Jpn. J. App. Phys. 43, 4207-4211 (2004).
    [CrossRef]
  15. D. Day and M. Gu, �??Formation of voids in doped polymethylmethacrylate polymer,�?? App. Phys. Lett. 80, 2404-2406 (2002).
    [CrossRef]
  16. G. Zhou, M. Ventura, M. Venner and M. Gu, �??Use of ultrafast-laser driven micro-explosion for fabricating three-dimensional void-based diamond lattice photonic crystals in a solid polymer material,�?? Opt. Lett. 19, 2240-2242 (2004).
    [CrossRef]
  17. M. Ventura, M. Straub and M. Gu, �??Void channel microstructures in resin solids as an efficient way to infrared photonic crystals,�?? App. Phys. Lett. 82, 1649-1651 (2003).
    [CrossRef]
  18. S. Eaton, F. Yoshino, L. Shah, H. Zhang, S. Ho, P. Herman and E. S. Rogers, �??Thermal heating effects in writing optical waveguides with 0.1 �?? 5 MHz repetition rate,�?? Proc. SPIE 5713, 35-42 (2005).
    [CrossRef]
  19. C. H. Fan, J. Sun and J. P. Longtin, �??Plasma absorption of femtosecond laser pulses in dielectrics,�?? J. Heat Transf. 124, 275-283 (2002).
    [CrossRef]

App. Opt. (1)

M. S. Giridhar, K. Seong, A. Schulzgen, P. Khulbe, N. Peyghambarian and M. Mansuripur, �??Femtosecond pulsed laser micromachining of glass substrates with application to microfluidic devices,�?? App. Opt. 43, 4584-4589 (2004).
[CrossRef]

App. Phys. A (3)

D. J. Hwang, T. Y. Choi and C. P. Grigoropoulos, �??Liquid-assisted femtosecond laser drilling of straight and three-dimensional microchannels in glass,�?? App. Phys. A 79, 605-612 (2004).
[CrossRef]

D. Ashkenasi, G. Muller, A. Rosenfeld, R. Stoian, I. V. Hertel, N. M. Bulgakova and E. E. B. Campbell, �??Fundamentals and advantages of ultrafast micro-structuring of transparent materials,�?? App. Phys. A 77, 223-228 (2003).

M. Masuda, K. Sugiola, Y. Cheng, N. Aoki, M. Kawachi, K. Shihoyama, K. Toyoda, H. Helvajian and K. Midorikawa, �??3-D microstructuring inside photosensitive glass by femtosecond laser excitation,�?? App. Phys. A 76, 857-860 (2003).
[CrossRef]

App. Phys. Lett. (3)

D. Day and M. Gu, �??Formation of voids in doped polymethylmethacrylate polymer,�?? App. Phys. Lett. 80, 2404-2406 (2002).
[CrossRef]

M. Ventura, M. Straub and M. Gu, �??Void channel microstructures in resin solids as an efficient way to infrared photonic crystals,�?? App. Phys. Lett. 82, 1649-1651 (2003).
[CrossRef]

C. B. Schaffer, A. O. Jamison and E. Mazur, �??Morphology of femtosecond laser-induced structural changes in bulk transparent materials,�?? App. Phys. Lett. 84, 1441-1443 (2004).
[CrossRef]

J. Heat Transf. (1)

C. H. Fan, J. Sun and J. P. Longtin, �??Plasma absorption of femtosecond laser pulses in dielectrics,�?? J. Heat Transf. 124, 275-283 (2002).
[CrossRef]

Jpn. J. App. Phys. (1)

Y. Iga, T. Ishizuka, W. Watanabe, K. Itoh, Y. Li and J. Nishii, �??Characterization of micro-channels fabricated by in-water ablation of femtosecond laser pulses,�?? Jpn. J. App. Phys. 43, 4207-4211 (2004).
[CrossRef]

Opt. Express (2)

Opt. Lett. (7)

C. B. Schaffer, A. Brodeur, J. F. Garcia and E. Mazur, �??Micromachining bulk glass by use of femtosecond lasers pulses with nanojoule energy,�?? Opt. Lett. 26, 93-95 (2001).
[CrossRef]

E. N. Glezer, M. Milosavljevic, L. Huang, R. J. Finlay, T. H. Her, J. P. Callan and E. Mazur, �??Three-dimensional optical storage inside transparent materials,�?? Opt. Lett. 21, 2023-2025 (1996).
[CrossRef] [PubMed]

K. M. Davis, K. Miura, N. Sugimoto and K. Hirao, �??Writing waveguides in glass with a femtosecond laser,�?? Opt. Lett. 21, 1729-1731 (1996).
[CrossRef] [PubMed]

Y. Cheng, K. Sugioka, K. Midorikawa, M. Masuda, K. Toyoda, M. Kawachi and K. Shihoyama, �??Three-dimensional micro-optical components embedded in photosensitive glass by a femtosecond laser,�?? Opt. Lett. 28, 1144-1146 (2003).
[CrossRef] [PubMed]

Y. Cheng, K. Sugioka and K. Midorikawa, �??Microfluidic laser embedded in glass by three-dimensional femtosecond laser microprocessing,�?? Opt. Lett. 29, 2007-2009 (2004).
[CrossRef] [PubMed]

Y. Li, K. Itoh, W. Watanabe, K. Yamada, D. Kuroda, J. Nishii and Y. Jiang, �??Three-dimensional hole drilling of silica glass from the rear surface with femtosecond laser pulses,�?? Opt. Lett. 26, 1912-1914 (2001).
[CrossRef]

G. Zhou, M. Ventura, M. Venner and M. Gu, �??Use of ultrafast-laser driven micro-explosion for fabricating three-dimensional void-based diamond lattice photonic crystals in a solid polymer material,�?? Opt. Lett. 19, 2240-2242 (2004).
[CrossRef]

Proc. SPIE (1)

S. Eaton, F. Yoshino, L. Shah, H. Zhang, S. Ho, P. Herman and E. S. Rogers, �??Thermal heating effects in writing optical waveguides with 0.1 �?? 5 MHz repetition rate,�?? Proc. SPIE 5713, 35-42 (2005).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic diagram of (a) the experimental setup for fabrication of microchannels and (b) the fabrication geometry in the sample.

Fig. 2.
Fig. 2.

Transmission images of a microchannel. (a) before and (b) after annealing at 200°C for 30 seconds. (c) and (d) are magnified sections of the channel before and after annealing. (e) illustrates that hollow channels are formed as water enters the channel via capillary action. The scale bars are 10 μm.

Fig. 3.
Fig. 3.

Measured microchannel characteristics as a function of the fabrication speed. (a) width, (b) depth and (c) ratio of width to depth. (d) transmission image of microchannels. The scale bar is 50 μm.

Fig. 4.
Fig. 4.

Measured microchannel characteristics as a function of the number of fabrication repeats, (a) width, (b) depth, (c) ratio of width to depth. (d) transmission image of microchannel cross-sections. The scale bar is 50 μm.

Fig. 5.
Fig. 5.

Measured microchannel characteristics as a function of the delay between repeats.

Metrics