Abstract

We investigate the phase noise of a diode laser based on the interferometric self-mixing effect. A detuned Fabry-Perot cavity converts the phase noise into intensity noise, and the noise is measured by the novel method as a function of the amount of feedback and the distance between the target and the laser front facet. Experimental results can be well explained by theory.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. J. Hast, �??Self-mixing interferometry and its applications in noninvasive pulse detection,�?? doctoral dissertation to be presented with the assent of the Faculty of Technology, University of Oulu, for public discussion in Raahensali (Linnanmaa, 2003), p. 20.
  2. P. G. R. King and G. J. Steward, �??Metrology with an optical maser,�?? New Scientist 17, 180 (1963).
  3. G. Giuliani, M. Norgia, S. Donati, and T. Bosch, �??Laser diode self-mixing technique for sensing applications,�?? J. Opt. A: Pure Appl. Opt. 4, S283 (2002).
    [CrossRef]
  4. W. M. Wang, W. J. O. Boyle, K. T. V. Grattan, and A. W. Palmer, �??Self-mixing interference in a diode laser: experimental observations and theoretical analysis,�?? Appl. Opt. 2, 1551 (1993).
    [CrossRef]
  5. L. Scalise, Y. Yu, G. Giulaini, G. Plantier, and T. Bosch, �??Self-mixing laser diode velocimetry: application to vibration and velocity measurement,�?? IEEE Trans. Instrum. Meas. 53, 223 (2004).
    [CrossRef]
  6. F. Gouaux, N. Servagent, and T. Bosch, �??Absolute distance measurement with an optical feedback interferometer,�?? Appl. Opt. 37, 6684 (1998).
    [CrossRef]
  7. S. Donati, G. Giuliani, and S. Merlo, �??Laser diode feedback interferometer for measurement of displacements without ambiguity,�?? IEEE J. Quantum Electron. 31, 113 (1995).
    [CrossRef]
  8. N. Servagent, F. Gouaux, and T. Bosch, �??Measurement of displacement using the self-mixing interference in a laser diode,�?? J. Opt. 29, 168 (1998).
    [CrossRef]
  9. P. J. de Groot and G. M. Gallatin, �??Ranging and velocimetry signal generation in a backscatter-modulated laser diode,�?? Appl. Opt. 27, 4475 (1988).
    [CrossRef] [PubMed]
  10. G. Giuliani, S. B. Pietra, and S. Donati, �??Self-mixing laser diode vibrometer,�?? Meas. Sci. Technol. 14, 24 (2003).
    [CrossRef]
  11. G. Giuliani and M. Norgia, �??Laser diode linewidth measurement by means of self-mixing interferometry,�?? IEEE Photon. Technol. Lett. 12, 1028 (2000).
    [CrossRef]
  12. J. A. Armstrong, �??Theory of interferometric analysis of laser phase noise,�?? J. Opt. Soc. Am. 56, 1024 (1966).
    [CrossRef]
  13. G. A. Acket, D. Lenstra, A. J. Den Boef, and B. H. Verbeek, �??The influence of feedback intensity on longitudinal mode properties and optical noise in index-guided mode semiconductor lasers,�?? IEEE J. Quant. Electron. QE-20, 1163 (1984).
    [CrossRef]
  14. H. W. M. Salemink and J. W. M. Biesterbos, �??Optical stability of narrow stripe, proton-isolated AlGaAs double heterostructure lasers with gain guiding,�?? Appl. Phys. Lett. 43, 434 (1983).
    [CrossRef]
  15. Y. Yu, G. Giuliani, and S. Donati, �??Measurement of the linewidth enhancement factor of semiconductor lasers based on the optical feedback self-mixing effect,�?? IEEE Photon. Technol. Lett. 16, 990 (2004).
    [CrossRef]
  16. S. Donati and G. Giuliani, �??Analysis of the signal amplitude regimes in injection-detection using laser diodes,�?? in Physics and Simulation of Optoelectronic Devices VIII, R. H. Binder; P. Blood, and M. Osinski, eds., Proc. SPIE 3944, 639 (2000).
    [CrossRef]
  17. K. Petermann, Laser Diode Modulation and Noise (Kluwer Academic, Dordrecht, The Netherlands, 1988).
    [CrossRef]
  18. T.-C. Zhang, J.-P. Poizat, P. Grelu, J.-F. Roch, P. Grangier, F. Marin, A. Bramati, V. Jost, M. D. Levenson, and E. Giacobino, �??Quantum noise of free-running and externally-stabilized laser diodes,�?? Quant. Semicl. Opt. 7, 601 (1995).
    [CrossRef]
  19. Y. Zhang, T. C. Zhang, T. Y. L,I, and C. D. Xie, �??Phase noise measurement by F-P cavity.�?? Acta Opt. Sinica. 4, 465 (2000).

Acta Opt. Sinica.

Y. Zhang, T. C. Zhang, T. Y. L,I, and C. D. Xie, �??Phase noise measurement by F-P cavity.�?? Acta Opt. Sinica. 4, 465 (2000).

Appl. Opt.

Appl. Phys. Lett.

H. W. M. Salemink and J. W. M. Biesterbos, �??Optical stability of narrow stripe, proton-isolated AlGaAs double heterostructure lasers with gain guiding,�?? Appl. Phys. Lett. 43, 434 (1983).
[CrossRef]

IEEE J. Quant. Electron.

G. A. Acket, D. Lenstra, A. J. Den Boef, and B. H. Verbeek, �??The influence of feedback intensity on longitudinal mode properties and optical noise in index-guided mode semiconductor lasers,�?? IEEE J. Quant. Electron. QE-20, 1163 (1984).
[CrossRef]

IEEE J. Quantum Electron.

S. Donati, G. Giuliani, and S. Merlo, �??Laser diode feedback interferometer for measurement of displacements without ambiguity,�?? IEEE J. Quantum Electron. 31, 113 (1995).
[CrossRef]

IEEE Photon. Technol. Lett.

G. Giuliani and M. Norgia, �??Laser diode linewidth measurement by means of self-mixing interferometry,�?? IEEE Photon. Technol. Lett. 12, 1028 (2000).
[CrossRef]

Y. Yu, G. Giuliani, and S. Donati, �??Measurement of the linewidth enhancement factor of semiconductor lasers based on the optical feedback self-mixing effect,�?? IEEE Photon. Technol. Lett. 16, 990 (2004).
[CrossRef]

IEEE Trans. Instrum. Meas.

L. Scalise, Y. Yu, G. Giulaini, G. Plantier, and T. Bosch, �??Self-mixing laser diode velocimetry: application to vibration and velocity measurement,�?? IEEE Trans. Instrum. Meas. 53, 223 (2004).
[CrossRef]

J. Opt.

N. Servagent, F. Gouaux, and T. Bosch, �??Measurement of displacement using the self-mixing interference in a laser diode,�?? J. Opt. 29, 168 (1998).
[CrossRef]

J. Opt. A: Pure Appl. Opt.

G. Giuliani, M. Norgia, S. Donati, and T. Bosch, �??Laser diode self-mixing technique for sensing applications,�?? J. Opt. A: Pure Appl. Opt. 4, S283 (2002).
[CrossRef]

J. Opt. Soc. Am.

Meas. Sci. Technol.

G. Giuliani, S. B. Pietra, and S. Donati, �??Self-mixing laser diode vibrometer,�?? Meas. Sci. Technol. 14, 24 (2003).
[CrossRef]

New Scientist

P. G. R. King and G. J. Steward, �??Metrology with an optical maser,�?? New Scientist 17, 180 (1963).

Proc. SPIE

S. Donati and G. Giuliani, �??Analysis of the signal amplitude regimes in injection-detection using laser diodes,�?? in Physics and Simulation of Optoelectronic Devices VIII, R. H. Binder; P. Blood, and M. Osinski, eds., Proc. SPIE 3944, 639 (2000).
[CrossRef]

Quant. Semicl. Opt.

T.-C. Zhang, J.-P. Poizat, P. Grelu, J.-F. Roch, P. Grangier, F. Marin, A. Bramati, V. Jost, M. D. Levenson, and E. Giacobino, �??Quantum noise of free-running and externally-stabilized laser diodes,�?? Quant. Semicl. Opt. 7, 601 (1995).
[CrossRef]

Other

K. Petermann, Laser Diode Modulation and Noise (Kluwer Academic, Dordrecht, The Netherlands, 1988).
[CrossRef]

J. Hast, �??Self-mixing interferometry and its applications in noninvasive pulse detection,�?? doctoral dissertation to be presented with the assent of the Faculty of Technology, University of Oulu, for public discussion in Raahensali (Linnanmaa, 2003), p. 20.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Schematic figure of self-mixing interference.

Fig. 2.
Fig. 2.

Detuned Fabry-Perot cavity for phase noise measurement.

Fig. 3.
Fig. 3.

Experiment setup for self-mixing interference. LD: laser diode from Hitachi (model HL-7851G); M: feedback mirror; SA: spectrum analyzer; PZT: piezoelectric transducer; C: Fabry-Perot cavity; D: photodetector.

Fig. 4.
Fig. 4.

The noise spectrum of LD without external feedback. Analysis frequency: 50MHz . A: noise when the cavity is scanned across the resonance; B: the fitting based on the Eq.(3); C: shot-noise level when cavity is far from resonance; D: the electronic noise of the PD. The parameters of the SA: RBW= 300kHz ; VBW= 300Hz ; Scanning time:120ms .

Fig. 5.
Fig. 5.

Noise spectra with SMI at 50MHz. A and B are typical traces when the scanning time of SA is 120ms ; C: shot-noise level; D: electronic noise level. The parameters of the SA: RBW= 300kHz ; VBW= 300Hz .

Fig. 6.
Fig. 6.

Phase noise versus the amount of feedback. External cavity length: 0.5m.

Fig. 7.
Fig. 7.

Phase noise via external cavity length. The feedback amount is 0.006%. Driving current is 120mA.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

C = f S l ( 1 R ) [ ( 1 + b 2 ) r R ] 1 2 ,
( Δ P ) 2 = 16 ω 0 2 P 0 2 C 2 Γ 0 2 ( J J th J J th 1 ) 2 · γ 2 sin 2 [ ω 0 + Δ ω ] { 1 + C cos [ φ 0 ( ω 0 + Δ ω ) τ ] } 2
· ( Δ L ) 2 ,
S ( Ω ) = 1 2 ( 1 + r 1 2 r 2 2 2 r 1 r 2 cos ϕ r 1 2 + r 2 2 2 r 1 r 2 cos ϕ ) 1 2 · { r 2 exp ( i ϕ ) r 1 r 2 exp [ i ( ϕ Ω ) ] r 1 1 r 1 r 2 exp ( i ϕ ) 1 r 1 r 2 exp [ i ( ϕ Ω ) ] +
r 2 exp ( i ϕ ) r 1 r 2 exp [ i ( ϕ + Ω ) ] r 1 1 r 1 r 2 exp - i ϕ ) 1 r 1 r 2 exp [ i ( ϕ + Ω ) ] } 2 p 2 + 1 2 ( 1 + r 1 2 r 2 2 2 r 1 r 2 cos ϕ 1 r 1 2 + r 2 2 2 r 1 r 2 cos ϕ ) 1 2
· { r 2 exp ( i ϕ ) r 1 r 2 exp [ i ( ϕ Ω ) ] r 1 1 r 1 r 2 exp ( i ϕ ) 1 r 1 r 2 exp [ i ( ϕ Ω ) ] r 2 exp ( i ϕ ) r 1 r 2 exp [ i ( ϕ + Ω ) ] r 1 1 r 1 r 2 exp ( i ϕ ) 1 r 1 r 2 exp [ i ( ϕ + Ω ) ] } 2 q 2 ,
( Δ P ) m = A ( r ( 1 B r ) 2 ) 1 2 .

Metrics