Abstract

We demonstrate selective detection of fluorophore labeled antibodies from minute samples probed by a sensor layer of complementary biomolecules immobilized inside the air holes of microstructured Polymer Optical Fiber (mPOF). The fiber core is defined by a ring of 6 air holes and a simple procedure was applied to selectively capture either α-streptavidin or α-CRP antibodies inside these air holes. A sensitive and easy-to-use fluorescence method was used for the optical detection. Our results show that mPOF based biosensors can provide reliable and selective antibody detection in ultra small sample volumes.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. P.St.J Russell, �??Photonic crystal fibers,�?? Science 299, 358-362 (2003)
    [CrossRef] [PubMed]
  2. M.A. van Eijkelenborg, M.C.J. Large, A. Argyros, J. Zagari, S. Manos, N.A. Issa, I. Bassett, S. Fleming, R.C. McPhedran, C.Martijn de Sterke, and N.A.P. Nicorovici, �??Microstructured polymer optical fibre,�?? Opt. Express 9, 319-327 (2001).
    [CrossRef] [PubMed]
  3. M.T. Myaing, J.Y. Ye, T.B. Norris, T. Thomas, J.R. Baker Jr., W.J. Wadsworth, G. Bouwmans, J.C. Knight, and P.St.J. Russell, �??Enhanced two-photon biosensing with double-clad photonic crystal fiber,�?? Opt. Lett. 28, 1224-1226 (2003).
    [CrossRef] [PubMed]
  4. J.B. Jensen, L.H. Pedersen, P.E. Hoiby, L.B. Nielsen, T.P. Hansen, J.R. Folkenberg, J. Riishede, D. Noordegraaf, K. Nielsen, A. Carlsen, and A. Bjarklev, �?? Photonic crystal fiber based evanescent-wave sensor for detection of biomolecules in aqueous solutions,�?? Opt. Lett. 29, 1974-1976 (2004).
    [CrossRef] [PubMed]
  5. J.M. Fini, "Microstructure fibres for optical sensing in gases and liquids," Meas. Sci. Technol. 15, 1120-1128 (2004).
    [CrossRef]
  6. S.O. Konorov, A.M. Zheltikov, and M. Scalora, �??Photonic-crystal fiber as a multifunctional optical sensor and sample collector,�?? Opt. Express 13, 3454-3459 (2005)
    [CrossRef] [PubMed]
  7. T.R. Glass, S. Lackie, and T. Hirschfeld, �??Effect of numerical aperture on signal level in cylindrical waveguide evanescent fluorosensors,�?? Appl. Opt. 26, 2181-2187 (1987).
    [CrossRef] [PubMed]
  8. J.B. Jensen, P.E. Hoiby, L.H. Pedersen, A. Carlsen, L.B. Nielsen, A. Bjarklev, and T.P. Hansen, �??Evanescent-wave sensing using a hollow-core photonic crystal fiber,�?? in Optical Fibers and Sensors for Medical Applications IV, Israel Gannot ed., Proc. SPIE 5317, 139-146 (2004)
    [CrossRef]
  9. P.E. Hoiby, L.H. Pedersen, L.B. Nielsen, J.B. Jensen, A. Bjarklev, and T.P. Hansen, �??Molecular immobilization and detection in a photonic crystal fiber,�?? In Optical Fibers and Sensors for Medical Applications IV, Israel Gannot ed., Proc. SPIE 5317, 220-223 (2004)
    [CrossRef]
  10. E.-H. Lee, R.E. Brenner, J.B. Fenn and R.K. Chang, �??Angular distribution of fluorescence from liquids and monodispersed spheres by evanescent wave excitation,�?? Appl. Opt. 18, 862-868 (1979)
    [CrossRef]
  11. J.-F. Masson, K. Hamersky, S. Beaudoin, and K.S. Booksh, �??In vitro biochemical monitoring with fiber optic based surface plasmon resonance sensors,�?? in Smart Medical and Biomedical Sensor Technologies,Brian M. Cullum ed., Proc. SPIE 5261, 123-134 (2004)
    [CrossRef]
  12. D.A. Markov, K. Swinney, and D.J. Bornhop, �??Label-free molecular interaction determinations with nanoscale interferometry,�?? J. Am Chem Soc 126, 16659-16664 (2004)
    [CrossRef] [PubMed]
  13. T.-W. Koo, S. Chan, A.A. Berlin, �??Single-molecule detection of biomolecules by surface-enhanced coherent anti-Stokes Raman scattering,�?? Opt. Lett. 30, 1024-1026 (2005)
    [CrossRef] [PubMed]
  14. T. Brevig, U. Krühne, R.A. Kahn, T. Ahl, M. Beyer, and L.H. Pedersen, �??Hydrodynamic guiding for addressing subsets of immobilized cells and molecules in microfluidic systems,�?? in BMC Biotech. <a href= "http://www.biomedcentral.com/1472-6750/3/10">http://www.biomedcentral.com/1472-6750/3/10</a> (2003)
  15. B. Regenberg, U. Kruhne, M. Beyer, L.H. Pedersen, M. Simon, O.R.T. Thomas, J. Nielsen, and T. Ahl, �??Use of laminar flow patterning for miniaturized biochemical assays,�?? Lab on a Chip 4, 654-657 (2004)
    [CrossRef] [PubMed]

Appl. Opt.

BMC Biotech.

T. Brevig, U. Krühne, R.A. Kahn, T. Ahl, M. Beyer, and L.H. Pedersen, �??Hydrodynamic guiding for addressing subsets of immobilized cells and molecules in microfluidic systems,�?? in BMC Biotech. <a href= "http://www.biomedcentral.com/1472-6750/3/10">http://www.biomedcentral.com/1472-6750/3/10</a> (2003)

J. Am Chem Soc.

D.A. Markov, K. Swinney, and D.J. Bornhop, �??Label-free molecular interaction determinations with nanoscale interferometry,�?? J. Am Chem Soc 126, 16659-16664 (2004)
[CrossRef] [PubMed]

Lab on a Chip

B. Regenberg, U. Kruhne, M. Beyer, L.H. Pedersen, M. Simon, O.R.T. Thomas, J. Nielsen, and T. Ahl, �??Use of laminar flow patterning for miniaturized biochemical assays,�?? Lab on a Chip 4, 654-657 (2004)
[CrossRef] [PubMed]

Meas. Sci. Technol.

J.M. Fini, "Microstructure fibres for optical sensing in gases and liquids," Meas. Sci. Technol. 15, 1120-1128 (2004).
[CrossRef]

Opt. Express

Opt. Lett.

Optical Fibers and Sensors for Medical A

J.B. Jensen, P.E. Hoiby, L.H. Pedersen, A. Carlsen, L.B. Nielsen, A. Bjarklev, and T.P. Hansen, �??Evanescent-wave sensing using a hollow-core photonic crystal fiber,�?? in Optical Fibers and Sensors for Medical Applications IV, Israel Gannot ed., Proc. SPIE 5317, 139-146 (2004)
[CrossRef]

P.E. Hoiby, L.H. Pedersen, L.B. Nielsen, J.B. Jensen, A. Bjarklev, and T.P. Hansen, �??Molecular immobilization and detection in a photonic crystal fiber,�?? In Optical Fibers and Sensors for Medical Applications IV, Israel Gannot ed., Proc. SPIE 5317, 220-223 (2004)
[CrossRef]

Science

P.St.J Russell, �??Photonic crystal fibers,�?? Science 299, 358-362 (2003)
[CrossRef] [PubMed]

Smart Medical and Biomedical Sensor

J.-F. Masson, K. Hamersky, S. Beaudoin, and K.S. Booksh, �??In vitro biochemical monitoring with fiber optic based surface plasmon resonance sensors,�?? in Smart Medical and Biomedical Sensor Technologies,Brian M. Cullum ed., Proc. SPIE 5261, 123-134 (2004)
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig 1.
Fig 1.

Micrograph showing the end-facet of the mPOF used in the biosensor experiments. The outer diameter is 300μm and the air hole diameter is 60μm. The bridges supporting the core broke during the cleaving of the fiber. The fracture only extends a few millimeters into the fiber.

Fig 2.
Fig 2.

Schematic presentation of the capture processes utilized in the selective detection of the antibodies. a:) α-streptavidin-Cy3 is captured by streptavidin molecules directly immobilized on the PMMA surface while the mis-matching α-CRP-Cy3 molecules are washed out, b:) α-CRP-Cy3 molecules are captured by the α-CRP/CRP sandwich, while the mis-matching α-streptavidin-Cy3 molecules do not bind and are washed out.

Fig 3.
Fig 3.

Fluorescence measurements demonstrating the excellent selectivity of the capture process in a fiber activated with a:) a streptavidin-layer, and b:) a α-CRP/CRP sandwich.

Metrics