Abstract

Utilizing the near- to far-field transformation based on the 3-D finite difference time domain (FDTD) method and Fourier transformation, the far-field profile of a photonic crystal organic light emitting diode is studied to understand the viewing angle dependence. The measured far-field profiles agree well with those of the simulation. The enhancement of the extraction efficiency in excess of 60% is observed for the optimized photonic crystal pattern.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. M. R. Krames, H. Amano, J. J. Brown, P. L. Heremans, �??Introduction to the issue on high-efficiency light-emitting diodes,�?? IEEE J. Sel. Top. Quantum Electron. 8, 185-188 (2002).
  2. T. Tsutsui, E. Aminaka, C. P. Lin, and D.-U. Kim, �??Extended molecular design concept of molecular materials for electroluminescence: sublimed-dye films, molecularly doped polymers and polymers with chromophores,�?? Philos. Trans. R. Soc. London A 355, 801-813 (1997).
    [CrossRef]
  3. N. K. Patel, S. J. Cinà, and J. H. Burroughes, �??High-efficiency organic light-emitting diodes,�?? IEEE J. Sel Top. Quantum Electron. 8, 346-361 (2002).
    [CrossRef]
  4. M.-H. Lu and J. C. Sturm, �??External coupling efficiency in planar organic light-emitting devices,�?? Appl. Phys. Lett. 78, 1927-1929 (2001)
    [CrossRef]
  5. S. Moller and S. R. Forrest, �??Improved light out-coupling in organic light emitting diodes employing ordered microlens arrays,�?? J. Appl. Phys. 91, 3324-3327 (2002).
    [CrossRef]
  6. Y.-J. Lee, S.-H. Kim, J. Huh, G.-H. Kim, Y.-H. Lee, S.-H. Cho, Y. C. Kim, and Y. R. Do, �??A high-extraction-efficiency nanopatterned organic light-emitting diode,�?? Appl. Phys. Lett. 82, 3779-3781 (2003).
    [CrossRef]
  7. H. J. Peng, Y. L. Ho, X. J. Yu, and H. S. Kwok, �??Enhanced coupling of light from organic light emitting diodes using nanoporous films,�?? J. Appl. Phys. 96, 1649-1654 (2004).
    [CrossRef]
  8. J. J. Wierer, M. R. Krames, J. E. Epler, N. F. Gardner, and M. G. Craford, �??InGaN/GaN quantum-well heterostructure light-emitting diodes employing photonic crystal structures,�?? Appl. Phys. Lett. 84, 3885-3887 (2004).
    [CrossRef]
  9. J. Huh, J. Ki Hwang, H. Y. Ryu, and Y. H. Lee, �?? Nondegenerate monopole mode of single defect two-dimensional triangular photonic band-gap cavity,�?? J. Appl. Phys. 92, 654-659 (2002).
    [CrossRef]
  10. H. Y. Ryu, K. S. Kim, S. H. Kwon, H. G. Park, and Y. H. Lee, �??Low-threshold photonic crystal lasers from InGaAsP free-standing slab structures,�?? J. Opt. Soc. Korea, 6, 57-63 (2002).
    [CrossRef]
  11. Y. R. Do, Y. C. Kim, Y. W. Song, and Y. H. Lee, �??Enhanced light extraction efficiency from organic light emitting diodes by insertion of a two-dimensional photonic crystal structure,�?? J. Appl. Phys. 96, 7629-7636 (2004).
    [CrossRef]
  12. S. D. Gedney, �??An anisotropic perfectly matched layer-absorbing medium for the truncation of FDTD lattices,�?? IEEE Trans. Antennas Propagat. 44, 1630-1639 (1996).
    [CrossRef]
  13. A. Taflove and S. C. Hagness, Computational Electrodynamics: the finite-difference time-domain method, (Artech House, Norwood, MA, 2nd ed., 2000).
  14. D. J. Shin, S. H. Kim, J. K. Hwang, H. Y. Ryu, H. G. Park, D. S. Song, and Y. H. Lee, �??Far- and near-field investigations on the lasing modes in two dimensional photonic crystal slab lasers,�?? IEEE J. Quantum Electron. 38, 857-866 (2002).
    [CrossRef]
  15. H. Rigneault, F. Lemarchand, and A. Sentenac, �??Dipole radiation into grating structures,�?? J. Opt. Soc. Am. A 17, 1048 (2000).
    [CrossRef]

Appl. Phys. Lett. (3)

M.-H. Lu and J. C. Sturm, �??External coupling efficiency in planar organic light-emitting devices,�?? Appl. Phys. Lett. 78, 1927-1929 (2001)
[CrossRef]

Y.-J. Lee, S.-H. Kim, J. Huh, G.-H. Kim, Y.-H. Lee, S.-H. Cho, Y. C. Kim, and Y. R. Do, �??A high-extraction-efficiency nanopatterned organic light-emitting diode,�?? Appl. Phys. Lett. 82, 3779-3781 (2003).
[CrossRef]

J. J. Wierer, M. R. Krames, J. E. Epler, N. F. Gardner, and M. G. Craford, �??InGaN/GaN quantum-well heterostructure light-emitting diodes employing photonic crystal structures,�?? Appl. Phys. Lett. 84, 3885-3887 (2004).
[CrossRef]

IEEE J. Quantum Electron. (1)

D. J. Shin, S. H. Kim, J. K. Hwang, H. Y. Ryu, H. G. Park, D. S. Song, and Y. H. Lee, �??Far- and near-field investigations on the lasing modes in two dimensional photonic crystal slab lasers,�?? IEEE J. Quantum Electron. 38, 857-866 (2002).
[CrossRef]

IEEE J. Sel Top. Quantum Electron. (1)

N. K. Patel, S. J. Cinà, and J. H. Burroughes, �??High-efficiency organic light-emitting diodes,�?? IEEE J. Sel Top. Quantum Electron. 8, 346-361 (2002).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

M. R. Krames, H. Amano, J. J. Brown, P. L. Heremans, �??Introduction to the issue on high-efficiency light-emitting diodes,�?? IEEE J. Sel. Top. Quantum Electron. 8, 185-188 (2002).

IEEE Trans. Antennas Propagat. (1)

S. D. Gedney, �??An anisotropic perfectly matched layer-absorbing medium for the truncation of FDTD lattices,�?? IEEE Trans. Antennas Propagat. 44, 1630-1639 (1996).
[CrossRef]

J. Appl. Phys. (4)

Y. R. Do, Y. C. Kim, Y. W. Song, and Y. H. Lee, �??Enhanced light extraction efficiency from organic light emitting diodes by insertion of a two-dimensional photonic crystal structure,�?? J. Appl. Phys. 96, 7629-7636 (2004).
[CrossRef]

S. Moller and S. R. Forrest, �??Improved light out-coupling in organic light emitting diodes employing ordered microlens arrays,�?? J. Appl. Phys. 91, 3324-3327 (2002).
[CrossRef]

J. Huh, J. Ki Hwang, H. Y. Ryu, and Y. H. Lee, �?? Nondegenerate monopole mode of single defect two-dimensional triangular photonic band-gap cavity,�?? J. Appl. Phys. 92, 654-659 (2002).
[CrossRef]

H. J. Peng, Y. L. Ho, X. J. Yu, and H. S. Kwok, �??Enhanced coupling of light from organic light emitting diodes using nanoporous films,�?? J. Appl. Phys. 96, 1649-1654 (2004).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Korea (1)

H. Y. Ryu, K. S. Kim, S. H. Kwon, H. G. Park, and Y. H. Lee, �??Low-threshold photonic crystal lasers from InGaAsP free-standing slab structures,�?? J. Opt. Soc. Korea, 6, 57-63 (2002).
[CrossRef]

Philos. Trans. R. Soc. London A (1)

T. Tsutsui, E. Aminaka, C. P. Lin, and D.-U. Kim, �??Extended molecular design concept of molecular materials for electroluminescence: sublimed-dye films, molecularly doped polymers and polymers with chromophores,�?? Philos. Trans. R. Soc. London A 355, 801-813 (1997).
[CrossRef]

Other (1)

A. Taflove and S. C. Hagness, Computational Electrodynamics: the finite-difference time-domain method, (Artech House, Norwood, MA, 2nd ed., 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic of PC-OLED with SiO2/SixNy photonic crystal layer and computation domain used for the 3-D FDTD method.

Fig. 2.
Fig. 2.

Calculated far-field profiles for PC-OLEDs of different lattice constants. Dotted circle in (a) represents the viewing cone of angle 45°.

Fig. 3.
Fig. 3.

Relative enhancement of extraction efficiency as a function of lattice constant. Squares - Energy is integrated over viewing angle ±30°. Circles -viewing angle ±40°. Triangles - viewing angle ±50°

Fig. 4.
Fig. 4.

Scanning electron micrographs of photonic crystal patterns. (a) Lattice constant 350 nm. (b) Lattice constant 500 nm. The radius r is ≈ 0.38Λ for both cases.

Fig. 5.
Fig. 5.

Measured and calculated far-field profiles. (a) & (b) Solid-angle-scanned profile. The dotted circle represents the angle ±70° from the vertical. (c) Scanned up to the horizon (±90°). (d)-(f) FDTD calculation results. Here the outer-most region corresponds to the horizon.

Fig. 6.
Fig. 6.

Intensity profiles scanned along horizontally. (a) and (b) are measured data. (c) and (d) are FDTD calculated profiles. Solid lines are for PC-OLEDs and the dotted line is shown as a reference corresponding to a typical conventional OLED.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

ε E t = × H σ E
P ( θ , ϕ ) = η 8 λ 2 ( N θ + L ϕ η 2 + N ϕ L θ η 2 )
N θ = ( F T 2 ( H y ) cos ϕ + F T 2 ( H x ) sin ϕ ) cos θ
N ϕ = F T 2 ( H y ) sin ϕ + F T 2 ( H x ) cos ϕ
L θ = ( F T 2 ( E y ) cos ϕ F T 2 ( E x ) sin ϕ ) cos θ
L ϕ = F T 2 ( E y ) sin ϕ F T 2 ( E x ) cos ϕ ,

Metrics